京公网安备 11010802034615号
经营许可证编号:京B2-20210330
好久没写文章了,本人目前从事BI行业,主要做BO(报表展示)这一块,写这一篇文章主要是想分享一下自己的心得。本人不是大牛,基础小白,所以下面你会看到的更多是不经润色(不经大脑)的心得体会,而不是一堆NB轰轰的专业名称,算法,建模思想,分析思路等技术分享型文章。更多的是对这个职业的看法,技术上的问题相信度娘比我更加专业!
欢迎吐槽指正!
说到数据分析一定要讲BI
商业智能(BI,BusinessIntelligence)。
BI(BusinessIntelligence)即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。
广义的BI是包括很多方面的内容,包括数据处理—》数据存储—》数据仓库—》(数据挖掘)—》BO展示层
BI是智能化的数据分析,说白了就是很多手工的工作我们让电脑帮我们做了,省去大量复杂繁琐的人工,这就是智能。比如日报,周报,月报这些报表我们统一用工具定时自己跑出来!
要说的有3点:
1、目前大部分企业的BI是不包括数据挖掘的,实际上很多人也不是很清楚这个流程,一般只是认为BI就是做报表的。恩,对,就是做报表的(BO展示层)。
2、一般小企业的数据分析岗位,很多只是简单粗暴的DB+Excel,所以你会发现,**,工资好低!
3、DB+Excel是基于小企业数据分析量不大才能这么做的,未来数据暴增下,一个注重数据分析的企业势必会走势智能化这条路,毕竟人工也是成本啊~
数据分析与数据挖掘
/**以下是百度百科解释**/
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据挖掘(英语:Datamining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-DiscoveryinDatabases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
数据分析和数据挖掘很多人没有分清,数据分析其实也是包括数据挖掘的,不过现在大部分企业细分岗位,一般数据分析和数据挖掘是两个不同的岗位!
以下我所讲的数据分析都是基于目前企业数据分析岗位而言(狭义上的数据分析,做报表的~)
数据分析主要是描述性统计分析,出报表,属于BO层面。工具有IBMcognos、SAPBO、oracleBIEE、MicrosoftSSRS、MicroStrategy、Smartbi、QlikView、Power-BI等~太多了,基本功能都相似,就是做好OLAP数据集后通过可视化的操作开发出报表框架,再定时出报表!
数据挖掘主要用于海量数据挖掘、预测性分析,比如关联规则,分类、回归、聚类、离群点检测之类的算法,主要工具有SAS、SPSS、R&Python、MSDataMing等,SAS&SPSS可视化界面,操作简单,比较容易上手;R&Python需要自己编程,难度比较大,但是函数、算法都封装好了,可以直接拿来用。
数据挖掘主要是基于海量的数据,即大数据。现在感觉任何东西跟大数据挂钩,它就变得高大上了!基于这个数据量的前提,所以目前国内做数据挖掘的主要在金融(银行、保险、证券)、电信、广告等行业&BAT三大巨头!
说实在数据挖掘,算法,统计思想这些不是最重要的,最根本是业务知识!跟BO对比起来,数据挖掘更最要你对业务的理解,如果你对业务理解透彻了,很多东西甚至都不需要经算法建模,只需要画一个透视图、透视表你就会发现其中的规律(知识)了。
很多新手都会问到的一个问题是,入门需要什么技能?
一、对于数据分析而言,最重要的技能是SQL、SQL、SQL+BO工具(这个有些了解就可,毕竟使用简单)
SQL需要会到什么程度?企业日常用到的大部分是:80%(增删查改+连接查询+基本聚合函数+数据格式处理函数)+20%(其他函数使用),而你只要需要会增删查改+连接查询+基本聚合函数+数据格式处理函数这些基础功能即可,其他函数使用通过百度你能看懂能用就行,使用率比较低。
二、对于(DM)数据挖掘而言,建模大部分的工作还是花在了数据处理上,这个要看对应企业使用的工具,数据处理流程要懂!!+算法(建模)思想+统计学基础,业务知识都是在日常工作中积累的。SO,DM的入门基础就相对要高些,门槛也相对较高。
三、补充一点:对于数据分析和数据挖掘以及大数据相关的工作还有一个特别重要的岗位,就是数据库开发。不同于DBA,大部分BI&DM80%数据库开发的工作其实都是在倒腾数据,所以前期数据处理环节特别重要,衍生出专业的数据库开发,主要做ETL、数据迁移,建多维数据集、数据仓库,OLAP,universe,query之类的工作。对技术要求较高,属于底层工作人员,个人觉得特别重要!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28