
大数据在医学上的影响是什么?
大数据已经重新定义了如何提供医疗保健。这并不是说,现有的医疗保健系统正在被丢弃,但某些重大变化正发生在根本性的领域。有些变化是值的注意的:医疗机构正越来越依赖于数据去建立定制化,个性化的治疗模式。重点是收集患者的健康数据,并根据数据,预测疾病的发病以便采取预防措施。这些数据也帮助医生获得病人健康的360度视图。大数据补充了现有的医疗保健系统。
在大数据被引入到医疗保健系统之前,数据的作用是有限的。医院将收集病人的数据,如姓名,年龄,疾病描述,糖尿病档案,医疗报告和家庭病史,那些适用的。这样的数据提供了一个约束病人健康问题的视图。例如,对于一个被诊断患有心脏病的患者来说,典型的信息就是家庭病史,饮食,征兆,年龄和其他疾病。虽然这些信息提供了详细的疾病,数据是无法提供其他角度的问题。还有其他可能会出现的更好的治疗方法去看待这些问题。
发表在自然杂志上的统计,显示了在美国帮助一小部分(<25%)患者的最高收入的十个处方药。对于胆固醇药物,成功率只有2%的患者。因此,成功的概率相比研究,批准和其他活动的支出是非常低的。
上面的图片显示的是不精确的药物对患者的影响。但是现在的范例是随着大数据和IT的帮助下迅速变大。
大数据增加了疾病治疗的一个维度。医生现在能够更好的了解疾病,并提供一个准确的,个性化的治疗。他们也能够预测复发,并提出预防措施。
疾病综合观
大数据已经帮助医疗机构采用了360度健康问题的观点。这导致了新的发现,新的治疗计划,更加准确的诊断。数据的可用性带来了对未知的健康问题的因素的关注。例如,某些种族的基因比其他种族更容易患心脏病。现在,当一个病人代表了一个种族患有心脏病,就到了该检查那些抱怨心脏问题的同一种族的病人的数据。它有助于了解这些患者的饮食习惯,生活方式,遗传结构,家庭基因,蛋白质,代谢产物,细胞,组织,器官,生物和生态系统。
预测疾病
这是第一次改变,当一个病人被治疗,医疗结构能够获得大量的有意义的关于病人的数据。这些数据可以用来预测疾病的复发,具有一定的精确度。例如,一个病人中风,医院有关于中风时间的数据,在多种中风情况下与上一次中风的间隔,影响中风的事件,例如心理的压力事件或沉重的体力劳动。医院可以提供明确的步骤以防止基于数据上的中风。
可穿戴设备
即使没有明显的症状,可穿戴设备在检测潜在的健康问题上可以完成一个出色的工作,为了评估一个明显健康的人,医生需要进行一系列漫长又昂贵的医疗检查。可穿戴设备基于医生做出的某些结论以及决定未来的诊断显示一些健康的指标。一些可穿戴设备和应用程序已经能够测量你的心率,脉搏,血糖水平和热量水平等参数。虽然目前大部分的设备被用于娱乐目的,他们正转变成严肃的小工具。美国食品药品管理局已经批准了一系列的血糖检测仪。
大数据对个性化医学的影响
专家认为,大数据将增加个人药物的显著疗效。一些倡议正在进行中,以提高个人药品的有效性。
一个这样的倡议已经被癌症研究计划被称为NIC分子分析试验的治疗选择。这项试验是国家健康研究所的精密医学研究所的一个重要组成部分。将主动招收约1000人以及匹配特定类型的肿瘤的特异性药物。那些注册的人拥有没有回应标准癌症治疗的肿瘤。这些肿瘤与已知的药物相匹配,能在某些遗传标记的基础上产生更好的结果。基于这种匹配的结果,将创建一个数据库的药物,因此,一个有效的相应肿瘤的已知的药物列表是可用的。这是一个正在进行的类型,新的肿瘤将被研究并且相应的药物将被识别。该试验有可能解开罕见的秘密以及致命的癌症类型通过与正确的药物匹配个体的基因组。任何类型的癌症患者都有资格登记试验,虽然项目目标是至少有25%的患者患有罕见的癌症。有一系列的参数来评估药物是否正在工作。一个参数是观察肿瘤的大小是否在缩小,第二个参数是过去六个月内患者病情是否在恶化。研究人员还将考虑到治疗的副作用。
结果,精密医学得到了巨大的普及和来自所有部门的应用。美国还宣布了一项215,000,000美元的国家高精度医学倡议(自然)。它将包括建立一个国家遗传数据库,以及在美国一百万人的其他数据。
上述图像显示了如何启用个性化医疗保健
毫无疑问,大数据可以彻底改变医疗保健和个性化药品。然而,整个世界的普及速度仍然很慢,而且并不统一。大数据在全球医疗保健有着潜在显著的必不可少的费用。因为大数据的采用代表了一种模范式的转变,在某些方面已经出现了阻力。但随着效益变得更加明显,采用将变得更为顺畅。大数据最大的潜力在于为被疾病威胁的生命寻找药物。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08