京公网安备 11010802034615号
经营许可证编号:京B2-20210330
谷歌的海量数据排序实验史
自从相关工具创建以来,我们一直通过对海量的随机数据执行排序来测试MapReduce。这种方式很受欢迎,因为生成任意数量的数据非常简单,想要验证输出结果是否正确也很简单。
尽管最开始的MapReduce论文报告的是TeraSort的结果。工程师们将定期对1TB或10TB数据执行排序当作回归测试来做,因为测试时使用的数据量越大,那些不显眼的bug就越容易被发现。然而,当我们进一步扩大数据规模后,真正的乐趣才刚开始。本文将会讨论几年前我们所做的一些PB规模的排序实验,包括在我们看来最大的一次MapReduce任务:对50PB的数据执行排序。
如今,GraySort已是海量数据排序基准之选,测试者必须以最快速度按字典顺序对至少100TB的数据执行排序。网站sortbenchmark.org跟踪记录了这项基准测试的官方优胜者,但谷歌从未参加过官方竞赛。
由于实现Reduce的过程就是对键值排序,MapReduce刚好适合解决这个问题。通过合适的(词典)分片功能,MapReduce就能输出一系列的文件,其中包含最终排序后的数据集。
有时在数据中心有新集群出现时(一般是为了搜索索引团队的使用),我们这些MapReduce团队的人员就有机会歇口气,在实际工作量压过来之前休闲几周。这些时候,我们才有机会试试看:让集群“超负荷”、探究硬件的极限、搞挂一些硬盘、测试一些非常昂贵的设备,并学到很多系统性能相关的东西,同时(在非官方的)排序基准测试获得胜利。
图一:谷歌的Petasort记录
2007
(1PB,12.13小时,1.37TB/分钟,2.9 MB/秒/worker)
我们在2007年首次运行Petasort。那时候,我们主要是开心能把这个测试完成,尽管对输出结果的正确性还有些疑问(由于未作验证而无法确认)。当时,若不是我们关闭了检查map分片与备份的输出结果是否一致的机制,这项任务是无法完成的。我们怀疑,这是用作输入和输出结果存储的谷歌档案系统(GFS)所造成的限制。GFS的校验和保护不足,有时会返回损坏的数据。不幸的是,该基准测试所使用的文件格式并不包含任何内嵌的校验和,无法让MapReduce发送通知(在谷歌,通常使用MapReduce的方式就是使用内嵌校验和的文件格式)。
2008
(1PB,6.03小时,2.76TB/分钟,11.5 MB/秒/worker)
2008年,我们首次专注于优化调整,花了几天时间调整分片数量、不同缓冲区的大小、预读/预写策略、页面缓存使用等,并在博客中记录了结果。最终,通过将输出结果三路复制到GFS,我们解决掉了瓶颈,这也成了我们那时在谷歌的标准用法,少一路都会有很高的风险损失掉数据。
2010
(1PB,2.95小时,5.65TB/分钟,11.8 MB/秒/worker)
在这个测试中,我们使用了新版本的GraySort基准,这个版本使用到了不可压缩的数据。在前几年中,我们从GFS读取或者向其写入1PB数据时,实际shuffle的数据量仅有大约300TB左右,因为那时所使用的ASCII格式都是压缩过的。
在这一年中,谷歌将GFS更新为下一代分布式存储系统Colossus。之前使用GFS时所遇到的数据损坏问题不再出现了,我们还在输出结果中使用了RS编码(Colossus的新功能),从而将写入的总数据量从3PB(三路复制)减少到大约1.6PB。这时我们也首次证实了输出结果的正确性。
为了减少离散数据的影响,我们运用了动态分片技术(也就是减少子分片),后来演变为了在Dataflow中使用完全动态分片技术。
2011
(1PB,0.55小时,30.3TB/分钟,63.1 MB/秒/worker)
这一年我们的网络速度更快,也开始关注每台服务器的效率,特别是输入/输出(I/O)方面的问题。我们要确保所有的硬盘I/O操作都是在2MB大小的块区内进行的,解决有时会缩小到64kB块区的问题。我们使用了固态硬盘(SSD)来记录部分数据,这使得Petasort测试首次在一小时之内完成,准确来讲是33分钟,可以参考这里的记录。最终,在分布式存储中输入/输出以及将中间数据保存在硬盘中以支持容错(由于在实验中,某些硬盘甚至整台服务器都会宕掉,而且这种情况会频繁出现,因此容错非常重要)的问题上,性能达到了指定MapReduce架构的硬件极限性能的将近两倍。同时也获得了更高的扩展:我们在6小时27分钟之内运行了10PB的数据(26TB/分钟)。
2012
(50PB,23小时,36.2TB/分钟,50 MB/秒/worker)
在这个测试中,我们将注意力转向更大规模的数据排序,通过调用我们在谷歌所能控制的最大规模集群,将shuffle的数据量提到最大,然后运行相应的MapReduce任务。不幸的是,这个集群的空间不够让100PB的数据排序,因此我们将要排序的数据限制在50PB。这个测试仅运行了一次,也没有做专门的优化调整,而且设置还是取自之前做10PB实验时所用的那一套,完成时间为23小时5分钟。
注意,这个排序的规模是GraySort的500倍,在吞吐量上是2015年GraySort官方优胜者的两倍。
这些实验让我们获益良多:包括在运行万台规模的服务器上执行排序时遇到了什么挑战,以及如何优化调整以接近硬件性能的速度极限。
尽管这些排序实验非常有趣,但仍有一些缺点:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23