京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据产品经理的必修课:数据图表应用
图表是件花衣裳,你得懂得怎么穿!
初阶的饼图、环形图、折线图、柱形图、条形图等就不多说了,因为他们直观到无需解释。但需要提一下做这些图的时候的细节:
(可跳过不看)
首先,告别excel默认的样式和配色,因为那样会使你的报告逼格很低。
在我平时工作中,许多伙伴会问“你这图表用什么软件做的?感觉好高级?”,我说“excel啊”,他们吃惊不已。如何达到这些效果?
先仔细摸索图表布局选项卡下的坐标轴、网格线、趋势线、图例,标签等功能细节;其次是熟悉绘图区格式里面的细节,如调整图表区域的配色,合理使用阴影等;最后是选择合适的图表来反映问题,这一点其实相当复杂,在后续的文章中会循序渐进地提及(结合一些场景),一股脑地说,我写得辛苦你读的累,划不来。
推荐一本刘万祥的《Excel图表之道》,它会让你惊叹于excel作图功能是如此的强大。
进入主题:强大的散点图
首先,散点图确实能很直观的反应两个变量之间的关系。
案例一:利用散点图观察不同来源流量与网站总流量的关系。
上图展示了某公司主站的新访客各来源渠道与总新访客量。
结论很直观:
direct(直接访问来源)、organic(自然搜索来源)和总的新访客有明显的正相关关系(direct与newuv相关系数达到0.89,direct来源的占比达到60%)。因此,我们知道这个公司大部分访客来源于口碑,而且其潜力还相当大,因为direct和organic图显示新访客对direct的弹性比较高,没有出现像sem(蓝色)图那样的边际效益递减的情况。
(一些名词解释我会在文章最后列出)
通过组合型散点图,我们已经得到了一些有价值的信息。我个人对sem来源的变化趋势非常感兴趣。针对这点我们继续挖掘信息。
案例二:在散点图上用颜色增加一个分析维度,并添加平滑趋势线。
图中,我将sem来源的访问量按四分位数进行了分层,配合局部加权多项式拟合线。
似乎又有了新的收获:
1.sem来源流量较少时(红色和绿色,后50%),与总流量的正相关关系是比较明显的。
2.sem来源流量在75%到50%分位数(绿色)之间非常集中。我猜测,使sem流量维持在这个水平的投放策略,看来是有一种粘性的,即便加大投放,在一定幅度内,sem的流量增长也不明显,直到突破某个临界值,进入蓝色和紫色区域后,才会松开。
3.较高sem流量(蓝色和紫色,前50%),与总流量的关系非常弱,拟合线几乎平了。
到这里,您可能会这么问:sem流量在什么程度才是最优?
要衡量这个问题,我选取了sem投放总成本,sem单位点击成本(cpc),和sem来源的注册转化率三个指标。让可爱的散点图升级!
气泡图,就是除了横纵坐标轴,点的大小还能衡量一个变量的散点图。上图不仅衡量了sem投放总成本(semCOST)和sem来源流量(semUV),还用点的大小衡量注册转化率(regRate)。结论比较直观,注册转化率高的点,在右上方,且预测线显示,投放力度越大,流量越大,且注册转化率至少不变。
得到这个结论有点振奋了,有没有?
还能不能再增加点信息?可以,我们将单位点击成本进一步放到散点图中。
案例四:气泡的颜色再衡量一个变量,升级为彩色气泡图
如图,点的大小是注册转化率,点的颜色是单位点击成本,从暖色调到冷色调,由低到高。转化率高且cpc低的点,在右上角。
我们可以说,sem投放成本越高,sem流量越多,且转化率越高,更可喜的是cpc还更低。对于一个sem投放部门来说,没有比这更完美的结论了。
但是,散点图只是反映了相关关系,并不是因果关系。我们不能说,增加sem投放是注册转化率升高且cpc降低的原因。但是,有这么显著的相关关系,我们就有足够的理由去增加投放,然后再去观察数据。
数据分析再精确,如果缩手缩脚,是依然办不成事情的。
当然,投放策略分析是可以做得非常复杂的,我们这里只是为了介绍散点图而引入了这个场景,初步地做个分析。但在中小企业,我觉得做到这一步就可以了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27