
数据分析应从数据积累做起
“不会酿酒,也能成为好的品酒师。”在IBM数据分析沙龙中,AsiaAnalytics首席执行官莫利伟通过品酒师的事例,说明企业应该如何正确进行数据分析,为大数据的应用作准备。作为一个企业的管理者,并不需要成为数据分析的天才或科学家,但需要将自己站在一个消费者的立场,体验、并理解数据分析带来的作用,从而更好地利用数据分析,实现最佳的收益。
以上来自于8月23日的IBM数据分析沙龙中。IBM软件部智慧商务技术总监杨旭青先生和AsiaAnalytics首席执行官莫利伟Olivier Maugain先生从IBM智慧商务、数据分析及大数据等方面,与记者一起分享目前企业数据分析的策略及重点方向。
对于大数据,IBM软件部智慧商务技术总监杨旭青先生首先从IBM软件部门中智慧商务的业务,带来IBM的观点。在IBM的智慧商务就是利用“大数据”进行分析、处理数据,形成一个完整的价值链,包括企业采购、营销、服务及销售多个方面。
一般我们理解的“大数据”,往往存在于电子商务方面,最典型的代表就是电子商务网站。消费者在购买相关商品后,系统会自动推送相关产品,也就是所谓的“猜你喜欢”。但有时会常常出现一大堆已经购买过的类似商品,并不会促进二次消费,有时候可能会出现更为便宜,更好的商品,给购买者带来负面感受,影响购物体验。所以IBM认为,企业不应该将数据分析局限于营销方面,首先要捕获客户行为,然后把客户分群。然后是长期的客户行为分析,而且是大量的客户行为分析,从而推测客人在购买过一件商品后,之后可能购买动向。所以不能单单从营销的角度考虑,只一味推荐雷同的商品。
除了针对营销部门的数据分析外,IBM对于企业内部的管理也有相应的解决办法,也是非常重要的部分。首先就是一些零售客户最为关心的订单管理,目的就在于与生产和库存紧密结合,可以提前预知客户群的数量、类型,需要生产多少的量,以及库存量等,以避免风险及浪费。正如一些电商企业,肯定有线上的交易平台和线下的仓储,经过数据分析,就能预测订单,以缩短整个周期,从管理、运营商获得较大的收益。对于订单管理,杨旭青先生又以全球服饰品牌ZARA的案例,进一步阐述。正因为ZARA将IT技术及数据分析引入门店的摆放及库存等流程中,店面的转换率明显提升,销售率也随之大增。这就是说明了数据分析对于零售企业的巨大作用。
总的来说,IBM所做的是通过大数据或者说数据分析为手段,帮助客户进行营销改进或优化,从订单管理、生产及销售各个环节,提升效率和转化率,改进企业内部的运作机制,以做到开源节流。
AsiaAnalytics首席执行官莫利伟先生对于IBM的杨旭青的观点非常赞同。他表示,数据分析对于公司来说,从财务以及业务的状况方面都可以带来很多的好处。根据麦肯锡的一份报告指出,能够善于运用这些数据分析的公司,平均的生产率和利润额都会比不采用这一方面的技术公司都要高5到6个百分点。以市场部作为一个例子来讲,同一份报告指出,如果能够以数据为中心来进行市场营销规划和决策,它的投入产出比会比其他不采用这一类方式的公司能够高15-20%。
通过分析我们可以为客户提供一对一定制化消费的体验,因为客户希望被理解、被尊重,能够享受特别感受的购物行为。除了这种定制化一对一的消费体验,对于数据有效的分析可以很好的去理解某一些或者特定细分客户群体对他有更深的理解,反过来通过对客户的了解,可以有助于产品的研发,针对特定群体产品开发以及营销手段。
数据分析应从数据积累做起
关于数据分析对于企业最大的优势这个问题,莫利伟先生进一步说明自己的观点。首先,数据分析不一定非要和“大数据”联系在一起。目前在中国真正意义上能够使用实时、产生大量数据进行分析与业务决策的公司并不多。目前的数据分析对于企业来说,能够提升明显的效率及降低成本。例如,有个公司希望推出一种最新的饮料,希望知道到底是男性还是女性对这个饮料会更喜欢。如果做市场调研、问卷调查,找300个人,其中150个男人和150个女的,肯定会得出一定的数据量,但这一数据量只在几个KB而已,而真正需要数据量则应该达到几个MB或者到一个GB。在中国一些大型的公司,包括运营商、银行及淘宝平台,确实已经开始用到数据挖掘的方式来做一些预测性分析,帮助业务的决策。这些都是利用大量数据进行分析的案例。
其次,单纯从数据量上面来讲,不仅是大企业,在一些中小型企业中,如有若干年的积累,也可以去做数据挖掘跟预测性分析。基本来说,1万条消费者的记录,10个或者20个左右的变量,这个数据量可能在20个DB。拥有的数据量越大,数据分析的成功率也就越大。所以无论是大型企业,还是中小型企业都应该从数据积累做起,并通过有效的算法,进行深度分析,才能得出结论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01