
“大数据饽饽”不好啃
《大数据时代》一书风靡全球已有时日。大数据(Big Data),又称“巨量资料”,是指其数据规模极其巨大,以致很难通过一般软件工具加以撷取、管理、处理并整理成为有用资讯。按业界说法,大数据特点为4个“V”:即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
大量、高速——到了什么程度呢?一个移动硬盘,容量大约为10个G。2001年,全球互联网总流量达到1EB(即10亿个G);2004年,一个月即达到1EB;2007年,达到1EB只需一周;而到2013年,仅需一天!换句话说,全球互联网一天产生的信息量,可以刻满1.88亿张DVD光盘。
多样、价值——如此大量、高速的数据,其多样性毋庸置疑,小到个人与个人的数分钟通话,大到公司与公司的巨额交易,虽然全是些风马牛不相及的数字,但经过科学的收集、归类、整理,再加以分析、排列、组合,就会神奇地演变成全新的极其有用的各种资讯。原始数据越大,处理难度自然越大,但处理后其应用价值亦越大。大数据这种无中生有、化腐朽为神奇的增值功能,令人神往。
正因此,世界经济论坛报告将大数据认定为新世纪的“新财富”,称其价值“堪比石油”。也正因此,发达国家纷纷将开发利用大数据作为夺取新一轮竞争制高点的重要目标。美国政府于2012年3月发布了《大数据研究与发展倡议》报告,这是继1993年宣布“信息高速公路”之后又一重大部署。欧盟及日本等国也在大数据研发方面投入巨资,竭尽全力拼抢这一制高点。
大数据这块饽饽虽然闻起来很香,但啃起来却有点硬,其难度有四,一是数据收集难,不但难在大,海量信息,而且难在杂,万千角度;二是数据存储难,如此海量存储,既要低成本、低能耗,又要高质量、高识别;三是数据处理难,信息如密网交织,错综复杂,处理如剥茧抽丝,穿针引线,其难度可想而知;四是数据呈现难,数据最终是要拿来使用的,其呈现须简单、实用,无疑,这是又一个由繁入简的艰巨工程。
好在,大数据应用已初见曙光,欧美各国均有成功先例。有人设想,倘若我们将大数据应用于日常生活,那么,当你打算购买某一产品时,只消将名称输入手机,大数据就会告诉你,这些东西在当地哪些商场有售,其价格分别是多少。于是,你可以马上作出决策。这将给人们带来多么大的方便,又将给商业流通带来多么大的改变。
万事虽然起头难,坚持动手就不难。所谓数据之“大”,不过相对而言。目前,百度、阿里巴巴、腾讯等不少公司已着手成立大数据研发机构。百度目前日处理数据量已达100PB(1EB=1024PB),相当于2700万册藏书。而阿里则根据淘宝网上中小企业的交易状况,筛选出财务健康及讲诚信企业,并对其发放无担保贷款300多亿元,坏账率仅0.3%。这都是大数据应用的好例子。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22