京公网安备 11010802034615号
经营许可证编号:京B2-20210330
通过数据提高用户体验的4大秘诀
在市场营销中,数据就是力量。对业内营销人员的调查显示,各类品牌都在追赶大数据的浪潮。 Direct Marketing Association调查发现,84%的受访者表示,他们2015年要在数据驱动的营销方案上增加开支。
与此同时,InfoGroup调查也发现,品牌依赖许多不同来源收集和分析这些数据。所有这些活动都是以提高用户体验的名义进行的,以期改变和吸引更多新的用户。
数据非常重要,但是仅有这些信息不可能帮助数据驱动的营销活动取得成功。营销人员还必须采取其他重要措施,以确保他们在预算之内接触到目标用户。以下是营销人员将数据变成可操作解决方案的四大秘诀,它们可直接帮助提高用户体验。
1.采访用户以填补空白
定量数据是确定品牌哪些策略发挥作用、哪些方面需要改进的重要指标。可是,没有统计可以解释为何营销活动成功比用户做出改变的决定更好的理由,无论那是否意味着购买或只要求更多信息。接触用户、询问他们行为的驱动力,将为定量指标提供更好环境。
对使用你产品的不同用户进行采访很重要。为何这种产品对一个用户有效,而对另一个用户却没有太大效果。理解数据和趋势意味着你要从目标受众中广泛的样本中收集到足够信息。
在进行采访时,你的目标是了解不同的用户群体。通过在第三方分析工具(比如Preact)上查看使用和行为数据,你可以找到具体的用户群体,并分析他们使用最多的产品功能。如果目标是对产品进行整体改进,你需要获得不同类别的信息。如果你的目标只是优化某种特定功能,你可以挑选出特定类别的用户。
无论在哪种情况下,你可以通过Survey Monkey或Tech Validate发出调查,也可以发送电邮询问接收者是否有兴趣聊聊。你可能会非常惊讶地发现,很多人都想与你谈谈,他们经常会提供非常棒的反馈或建议,帮助你更好地改进产品。
2.检查使用数据以评估用户体验
细化和个性化已经在网络营销上风靡一时。大数据帮助公司了解他们目标受众的不同方面,并基于类似用户找出最好的内容。这个过程可以不断提高。与X一代或婴儿潮一代相比,你的产品对更年轻的新千年一代的吸引力将完全不同。
考虑好你尝试吸引的用户群体。所有这些群体都满足他们的体验吗?他们接触你的产品经历相似吗?不同网站访客与特定内容互动,以及通过“转化漏斗”改变他们时,都将突出产品需要改进或提高的部分。
Preact可以追踪用户行为数据,比如了解一名用户点击某个特定按钮或观看某个网页的次数。它会收集接触和专业信息,帮助细分用户。你也可以使用Zendesk等工具追踪用户的正式投诉,这将有助于尽快发现漏洞。
3.找出停滞用户,并将他们带回来
有时候,一种战略可能无法获得预期回报率,或者无法吸引用户关注品牌。当有人转变一次或两次后,他们可能不再回来。但是通过更好地了解他们转化的路径后,也许可以将他们重新吸引回来。
再次看看你的定量数据,推测可能发生的事情,进行试验和采访。一旦找到这些用户为何不愿再回来的清晰模式,再利用你的产品去解决问题,然后向老用户提供新的信息,重新吸引他们的关注。
进行试验时,可以考虑使用Optimizely,这是一种允许你改变措辞、按钮位置以及文本等内容的工具,创造出同一个网页的多个版本。措辞可能对产品前景拥有巨大影响力,而Optimizely可帮助编辑多个版本的网页,并将它们进行对比。Optimizely将向用户随机提供一个版本的网页,并追踪每个平台的表现。
4.分析采集数据以评估进展
“转化漏斗”是许多品牌可能忽略的信息。营销团队给出如此多的内容,营销人员可能忘记哪些内容有用,哪些没用。对于公司来说,向用户展现的第一个点最为重要。为此,确定哪个渠道能够真正吸引新的用户绝对不容忽视。结果可能令人觉得有点儿意外,它是一种更改时间和努力,令其变成更高效渠道的好方法。
KISSmetrics等分析工具可追踪采集渠道,允许你看到有多少用户来自谷歌(微博)或付费广告等地方,以及他们是否正在转化中。如果你继续追踪来自不同渠道的用户,你甚至可以发现哪个渠道表现最好。
Google Analytics也是一种用于追踪这些数据的免费替代工具。大多数博客和小公司开始时都使用Google Analytics,当他们拥有更多现金后,才会订阅更强大的第三方工具。
营销人员为品牌做出决定提供的数据越多越好。它不仅仅只与原材料的定量分析有关,还必须从信息中找出有意义的见解,以确保会为公司带来实实在在的好处。有时候,找到这些答案可能需要深挖一些。调查每一条信息背后隐藏的真正意义,你会发现所有数据都会开始证明其价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26