
通过数据提高用户体验的4大秘诀
在市场营销中,数据就是力量。对业内营销人员的调查显示,各类品牌都在追赶大数据的浪潮。 Direct Marketing Association调查发现,84%的受访者表示,他们2015年要在数据驱动的营销方案上增加开支。
与此同时,InfoGroup调查也发现,品牌依赖许多不同来源收集和分析这些数据。所有这些活动都是以提高用户体验的名义进行的,以期改变和吸引更多新的用户。
数据非常重要,但是仅有这些信息不可能帮助数据驱动的营销活动取得成功。营销人员还必须采取其他重要措施,以确保他们在预算之内接触到目标用户。以下是营销人员将数据变成可操作解决方案的四大秘诀,它们可直接帮助提高用户体验。
1.采访用户以填补空白
定量数据是确定品牌哪些策略发挥作用、哪些方面需要改进的重要指标。可是,没有统计可以解释为何营销活动成功比用户做出改变的决定更好的理由,无论那是否意味着购买或只要求更多信息。接触用户、询问他们行为的驱动力,将为定量指标提供更好环境。
对使用你产品的不同用户进行采访很重要。为何这种产品对一个用户有效,而对另一个用户却没有太大效果。理解数据和趋势意味着你要从目标受众中广泛的样本中收集到足够信息。
在进行采访时,你的目标是了解不同的用户群体。通过在第三方分析工具(比如Preact)上查看使用和行为数据,你可以找到具体的用户群体,并分析他们使用最多的产品功能。如果目标是对产品进行整体改进,你需要获得不同类别的信息。如果你的目标只是优化某种特定功能,你可以挑选出特定类别的用户。
无论在哪种情况下,你可以通过Survey Monkey或Tech Validate发出调查,也可以发送电邮询问接收者是否有兴趣聊聊。你可能会非常惊讶地发现,很多人都想与你谈谈,他们经常会提供非常棒的反馈或建议,帮助你更好地改进产品。
2.检查使用数据以评估用户体验
细化和个性化已经在网络营销上风靡一时。大数据帮助公司了解他们目标受众的不同方面,并基于类似用户找出最好的内容。这个过程可以不断提高。与X一代或婴儿潮一代相比,你的产品对更年轻的新千年一代的吸引力将完全不同。
考虑好你尝试吸引的用户群体。所有这些群体都满足他们的体验吗?他们接触你的产品经历相似吗?不同网站访客与特定内容互动,以及通过“转化漏斗”改变他们时,都将突出产品需要改进或提高的部分。
Preact可以追踪用户行为数据,比如了解一名用户点击某个特定按钮或观看某个网页的次数。它会收集接触和专业信息,帮助细分用户。你也可以使用Zendesk等工具追踪用户的正式投诉,这将有助于尽快发现漏洞。
3.找出停滞用户,并将他们带回来
有时候,一种战略可能无法获得预期回报率,或者无法吸引用户关注品牌。当有人转变一次或两次后,他们可能不再回来。但是通过更好地了解他们转化的路径后,也许可以将他们重新吸引回来。
再次看看你的定量数据,推测可能发生的事情,进行试验和采访。一旦找到这些用户为何不愿再回来的清晰模式,再利用你的产品去解决问题,然后向老用户提供新的信息,重新吸引他们的关注。
进行试验时,可以考虑使用Optimizely,这是一种允许你改变措辞、按钮位置以及文本等内容的工具,创造出同一个网页的多个版本。措辞可能对产品前景拥有巨大影响力,而Optimizely可帮助编辑多个版本的网页,并将它们进行对比。Optimizely将向用户随机提供一个版本的网页,并追踪每个平台的表现。
4.分析采集数据以评估进展
“转化漏斗”是许多品牌可能忽略的信息。营销团队给出如此多的内容,营销人员可能忘记哪些内容有用,哪些没用。对于公司来说,向用户展现的第一个点最为重要。为此,确定哪个渠道能够真正吸引新的用户绝对不容忽视。结果可能令人觉得有点儿意外,它是一种更改时间和努力,令其变成更高效渠道的好方法。
KISSmetrics等分析工具可追踪采集渠道,允许你看到有多少用户来自谷歌(微博)或付费广告等地方,以及他们是否正在转化中。如果你继续追踪来自不同渠道的用户,你甚至可以发现哪个渠道表现最好。
Google Analytics也是一种用于追踪这些数据的免费替代工具。大多数博客和小公司开始时都使用Google Analytics,当他们拥有更多现金后,才会订阅更强大的第三方工具。
营销人员为品牌做出决定提供的数据越多越好。它不仅仅只与原材料的定量分析有关,还必须从信息中找出有意义的见解,以确保会为公司带来实实在在的好处。有时候,找到这些答案可能需要深挖一些。调查每一条信息背后隐藏的真正意义,你会发现所有数据都会开始证明其价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25