
大数据时代的三个变化
今天想说的是大数据时代的到来,就是靠智商吃饭的时代的到来,包括人的智商和及机器的智商。大神与神经只有一线之隔,时间不能等待,生命不能浪费,大数据时代,到底是大神还是神经,总的来讲,就是先要以积极的心态拥抱大数据。
大数据时代,信息将被逐步挖掘,趋向简单透明化
最近几个已经毕业多年的研究生因为过去的论文抄袭被挖掘出来处理了,事实上,这些都不能算得上是大数据,甚至连大数据的前奏都不算。之所以提前这个事,我想当事人当时并非只是侥幸心理,或许他们做梦也没有想到会被如此起底。个人信息在过去的时间里还能因信息不对称的问题有所隐瞒,在未来大数据将加速信息自身的对比与筛选。
大数据将带给我们三个颠覆性的观念转变:数据是全部数据,而不是随机采样;方向是大体方向,而不是精确制导;关系是相关关系,而不是因果关系。大数据时代,人们的生活习惯、工作信息、消费观念等将被记录,甚至隐私也会被充分挖掘。未来数据的价值将逐步增值,这种增值需要在一定的框架下进行,否则可能引发新一轮的个人信息安全与隐私问题,甚至也可能引发新一轮的伦理道德的讨论。
大数据时代,成本概念将拓展到事物的整个生命周期
互联网带给人们的冲击已经逐步得到全行业的认可,从不了解到抵触,再到互联网泡沫,再到成为一种基础设施,互联网成为了人们生活、工作等一切社会活动的必备品,如今人们也不会再去讨论互联网是否应该存在的问题了,而是变成了如何应用互联网的问题了。互联网本身所表现出来的属性,让“互联网+”成为了新的国家战略,事实上最初的原动力就是在解决信息不对称的问题以及效率低下的问题。随着互联网技术应用的不断广泛与深入,信息数据成为了未来世界竞争的热点。
大数据时代的到来,人们或者产品的竞争环境发生了改变,在参与竞争过程中其成本结构也发生了变化。在信息极度不对称的时代,由于信息匮乏或者传播效率低下等问题,成本主要依赖于产品本身及供销渠道,未来成本将延伸到诚信体系当中,而且诚信将作为一种常态化存在贯穿整个产品的生命周期,失去诚信将会导致产品成本的增加。
大数据时代,海量数据没有意义,精确制导靠的人机智能化
数量的量级到底应该以什么单位进行计算,目前都是泛泛而谈。有人判断最起码应以P单位计算,1P就是1000T,肯定的是大数据时代的数据量级应该很大。但是海量的数据并不代表有价值。类比现在比较火热的流量,举个简单的例子。比如2015年出现了很多类似于丁良辰等网红,产生的流量是很大的,但是在2015年,实际上这些流量都没有产生太多的价值。未来的大数据也是一样的,拥有海量的数据并不代表能够将其变现出来,海量数据更像是生产资料,先进的生产力还是要靠人智发掘出来。
精确制导虽然不是大数据的本质属性,但是精确制导却是人们在利用大数据谋求的结果。虽然无法做到有针对性的直达目标,但是最大化的缩减范围无限的接近目标却是数据应用的一个方向。这一趋势所依托的将是人机智能化,不仅仅有人的参与,而且有智能系统或产品的参与。
大数据时代的到来,智力将不再廉价,包括互联网、车联网、物联网,甚至是电力网络等,都将呈现出“数据网”的特点,人的行为也将会被记录在周围的环境当中,就算跑得了“人”,也跑不了“数据”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22