京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的三个变化
今天想说的是大数据时代的到来,就是靠智商吃饭的时代的到来,包括人的智商和及机器的智商。大神与神经只有一线之隔,时间不能等待,生命不能浪费,大数据时代,到底是大神还是神经,总的来讲,就是先要以积极的心态拥抱大数据。
大数据时代,信息将被逐步挖掘,趋向简单透明化
最近几个已经毕业多年的研究生因为过去的论文抄袭被挖掘出来处理了,事实上,这些都不能算得上是大数据,甚至连大数据的前奏都不算。之所以提前这个事,我想当事人当时并非只是侥幸心理,或许他们做梦也没有想到会被如此起底。个人信息在过去的时间里还能因信息不对称的问题有所隐瞒,在未来大数据将加速信息自身的对比与筛选。
大数据将带给我们三个颠覆性的观念转变:数据是全部数据,而不是随机采样;方向是大体方向,而不是精确制导;关系是相关关系,而不是因果关系。大数据时代,人们的生活习惯、工作信息、消费观念等将被记录,甚至隐私也会被充分挖掘。未来数据的价值将逐步增值,这种增值需要在一定的框架下进行,否则可能引发新一轮的个人信息安全与隐私问题,甚至也可能引发新一轮的伦理道德的讨论。
大数据时代,成本概念将拓展到事物的整个生命周期
互联网带给人们的冲击已经逐步得到全行业的认可,从不了解到抵触,再到互联网泡沫,再到成为一种基础设施,互联网成为了人们生活、工作等一切社会活动的必备品,如今人们也不会再去讨论互联网是否应该存在的问题了,而是变成了如何应用互联网的问题了。互联网本身所表现出来的属性,让“互联网+”成为了新的国家战略,事实上最初的原动力就是在解决信息不对称的问题以及效率低下的问题。随着互联网技术应用的不断广泛与深入,信息数据成为了未来世界竞争的热点。
大数据时代的到来,人们或者产品的竞争环境发生了改变,在参与竞争过程中其成本结构也发生了变化。在信息极度不对称的时代,由于信息匮乏或者传播效率低下等问题,成本主要依赖于产品本身及供销渠道,未来成本将延伸到诚信体系当中,而且诚信将作为一种常态化存在贯穿整个产品的生命周期,失去诚信将会导致产品成本的增加。
大数据时代,海量数据没有意义,精确制导靠的人机智能化
数量的量级到底应该以什么单位进行计算,目前都是泛泛而谈。有人判断最起码应以P单位计算,1P就是1000T,肯定的是大数据时代的数据量级应该很大。但是海量的数据并不代表有价值。类比现在比较火热的流量,举个简单的例子。比如2015年出现了很多类似于丁良辰等网红,产生的流量是很大的,但是在2015年,实际上这些流量都没有产生太多的价值。未来的大数据也是一样的,拥有海量的数据并不代表能够将其变现出来,海量数据更像是生产资料,先进的生产力还是要靠人智发掘出来。
精确制导虽然不是大数据的本质属性,但是精确制导却是人们在利用大数据谋求的结果。虽然无法做到有针对性的直达目标,但是最大化的缩减范围无限的接近目标却是数据应用的一个方向。这一趋势所依托的将是人机智能化,不仅仅有人的参与,而且有智能系统或产品的参与。
大数据时代的到来,智力将不再廉价,包括互联网、车联网、物联网,甚至是电力网络等,都将呈现出“数据网”的特点,人的行为也将会被记录在周围的环境当中,就算跑得了“人”,也跑不了“数据”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08