京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据”时代浓浓的统计学气息
统计学在近几年的变化,可以说受计算机的影响最为强烈。
计算机使商业模式发生了翻天覆地的变化。商品的采购、库存、销售等记录基本上全都已经数据化,成本和销量的把控与用纸笔进行管理的时代相比也变 得更加简单。顾客资料与消费记录、工作人员的工作时间与评定、健康状态、支付的报酬与成本核算等信息,都可以存储在公司内部系统和Excel电子表格中。 为了生产而进行的机械操作、到自己公司网站的链接,基本上所有的登录情况都会被记录下来,必要时可以综合统计作为经营的参考。就算说那些大型公司几乎所有 的业务流程已经全部实现电子化,也不为过。
但是,当一系列的业务都实现计算机化之后,那些从事计算机业务的企业却遭遇了瓶颈。不管他们如何提高硬件和软件的处理性能,如果需要计算机化的 业务流程没有增加,顾客对性能没有特别需求,那么他们就无法继续销售自己的商品。所以,不管是硬件厂商还是软件厂商,还是使用这些提供计算机服务的厂商, 所有与计算机相关的企业,都必须对已经得到满足的顾客们,提供一个购买他们更新技术的“理由”。
从好的方面来看,要想将已经足以满足顾客需要的性能更好地加以利用,就要考虑“如何创造更多的价值”。而实际上,计算机企业所考虑的是向顾客传 达“为了找出创造更多价值的方法,必须进行大量的数据处理”,为了让顾客接受这一提议,必须有一个“明显对商业有价值的理由”。
以现在的计算机技术来看,不管是多么庞大的数据量或者多么繁杂的计算都能够胜任,因此需要考虑的问题就变成了应该针对什么进行计算,而答案除了 统计分析之外再无其他。当然,如果只是将“统计分析”这个简单的词语作为题目,会让人感觉缺乏吸引力,于是就诞生出“大数据”和“商务智能”的概念。现在 大家之所以都对这两个题目和统计学如此关注,恐怕就是出于上述原因。
计算机行业的业界巨人,在弗明汉研究使用穿孔卡片和大型计算机时代就为其提供技术支持的IBM公司在这一点上表现得最为突出。IBM斥资数十亿 美元收购了在商务智能方面非常有名的Cognos公司,以及开发统计分析软件的SPSS公司,这两家公司都是在这一领域拥有丰富经验和影响力的公司。据说 2005~2011年之间,IBM公司对统计学和商务智能相关企业的投资金额已经超过140亿美元。
除了IBM之外,微软公司以及在数据库领域非常有名的甲骨文公司,还有NTT数据公司,都开始积极地收购与统计学和商务智能相关的企业。
或许这几家公司都已经发现,在接下来的时间里从自己的商业领域产生价值的主营产业,都在其中。
最能够证明这一推测的根据,来自于微软在专门用于招聘的网页上于2010年8月23日发表的一篇文章,其中提到技术领域今后最热门的3个专业,如下所示。
数据分析、机械学习、人工智能、自然语言处理。
商务智能、竞争分析。
分析、统计——特别是网页分析、分离测试(A/B测试)、统计分析。
只要是学过“计算机统计学”知识的人,都能够从上述内容里感觉到浓浓的统计学气息吧。
为了再现人类的认知机能,而从计算程序算法研究发展而来的机械学习与人工智能领域,如今若是没有统计学的理论基础就很难深入学习,至于商务智能 则完全可以说是统计学在商业领域的应用。要想完成A/B测试的计划,20世纪中叶现代统计学之父罗纳德·艾尔默·费希尔所完成的被称为“试验设计”的统计 学相关知识,则是最为重要的基础。
未来10年最受欢迎的职业是统计
另外,谷歌(Google)则比微软更加明确地表达了对统计学家的赞誉。谷歌的首席经济学家哈尔·范里安博士曾经在2009年1月麦肯锡公司发行的杂志上这样说道:
我一直坚信,未来10年最受欢迎的职业是统计。
最近,美国人经常使用“sexy”这个词来表达“受欢迎的”或者“有魅力的”,比如,“新款苹果手机的设计非常sexy”。哈尔认为统计学家也是“sexy”的。
作为一名统计学家,我对于哈尔的发言感到非常光荣,而且这绝对不是什么只停留在口头上的赞誉。统计学如今已经得到了计算机这个强有力的伙伴,可以被应用在所有领域,可以出现在世界上的每一个角落,以及人生中的每一个瞬间,能够对所有渴望得到回答的问题给出最佳答案。
曾经人类为了得到(自认为)正确的答案而只能寻求神的启示,后来在漫长时间中只能服从权威人士的意见。
但是,现在的情况不一样了。最佳答案就存在于每个人周围的数据之中。只要掌握统计学这个最强的学问,不管是想要健康、聪明,还是富裕,都变得非常简单。正如之前所说过的那样,这是世界上的学者们通过统计学证明的事实。
而想掌握这个最强、最受欢迎的学问,不必像IBM那样支付数额庞大的资金,只要在你的人生中投入一些学习时间就足够了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05