京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析的重点不是数据,而是问题
大数据分析最关键的不是数据,而是找到需要解决的问题,邓白氏高级副总裁、首席数据官安东尼·斯克里费加诺(Anthony Scriffignano)认为,任何一个拥有大量数据的公司, 不能随便就找个数据公司来分析,而是找到自己需要解决的问题 。
“ 他们可以告诉你很多事情。但是不解决任何问题。 ”2015年 12月24日,斯克里费加诺接受财新记者采访时表示,作为国际上最著名、历史最悠久的企业资信和金融分析公司,邓白氏已经和数据打了174年交道,虽然在大数据这一概念之初他们就开始使用这个工具,但是现在面临的最大困难还是,如何用适当的方式解决合适的问题。
1841年成立于美国新泽西州的邓白氏公司一直不断通过技术创新开拓信用评估市场,分拆上市前的穆迪公司、美国最著名的黄页广告公司丹尼雷公司和美国最大的市场调查公司尼尔森公司,都是其子公司。邓白氏的客户中,不仅包括全球最大的、最成功的企业,也有中等规模的和刚刚成立的小公司。
大数据分析,则是目前邓白氏所提供的万千种产品之一。斯克里费加诺说,现在全世界的数据中, 85%的数据是非结构化的 ,而我们过去重点分析的结构化数据,只是其中的15%,只是基于这些数据做出决策已经不合时宜。而通过大量非结构数据,不仅可以挖掘新的商业信息,也可以找到新的商业模式,这在10-15年前是完全不可能的,那时甚至没法描述这些数据。
他举例说,通过大数据分析,可以帮助客户找到新的合作伙伴,找到服务的重点,找到新的顾客。很多时候,他们不仅需要客户提供的数据,还要参考自己手头所掌握的数据,来做出正确的分析。“这项工作几乎永远没有终点, 你要想比竞争对手领先一步,永远都是一个挑战 ……虽然我们没法掌握地球上所有企业的信息,但是我们掌握的数据肯定比地球上任何企业都多。”斯克里费加诺说。
在乌镇的世界互联网大会上,斯克里费加诺碰到许多中国的同行,虽然他们并不都是从事大数据分析服务的公司,但也都在使用大数据,所面临的挑战也是相似的。例如,如何面对新的数据形式,如何面对高度动态化的数据等,“大家关心的主题是云计算,如何使用新的分析工具,但是很少人讨论 我们所面临的挑战究竟是什么,应该解决的问题是什么 ,” 斯克里费加诺说。
对于正在或者希望投入大数据行业的同行们,斯克里费加诺有三个建议。首先就是,最重要的不是数据,而是问题。“ 这里有一大堆数据,我们来分析一下有什么意义 ”,这样是不可取的。要从数据中发现,是否有新的商业行为,要知道自己希望解决什么问题,应该是“ 有没有可能发现新的商业行为 ,能帮助我们了解什么样的企业在增长,什么样的企业在走下坡路”。
第二是需要找到正确的人,他们拥有合适的技能,现在很多人都以数据专家自居,都在谈大数据分析,其实他们 只是给自己加了一个新的标签 ,他们未必拥有把大量繁杂的数据放在一个平台上分析的能力。
第三是领导者的能力要随时更新。现在行业变化太快,现在能够生存,不证明5-10年后能生存。当电视机从CRT过渡到液晶电视的时候,很多的企业主对后者的技术是一无所知的,所以就像恐龙一样消失了。所以领导者要避免自己变成恐龙,就需要不断了解新的技术,提出新的问题,因为这个行业变化太快了。
在这次世界互联网大会上,斯克里费加诺曾经表示,应对海量信息的挑战,需要创新,不仅是做新的事情,也可以 用新的方式来做以前的事情 。有很多没有解决的问题,需要 把它们分解 ,虽然可能还没有解决,但是问题已经变小了,这也是邓白氏现在正在从事的工作。
例如很多小微企业,通过大数据征信报告,成功在银行获得了无抵押贷款。而在迅速变化的时代,银行业本身存在的必要性也受到了挑战。斯克里费加诺说,他曾经问一个同行,10年以后会不会有银行,这位同行的答案是,除非他们做出改变。而在斯克里费加诺看来,银行当然会继续存在,但是 银行业也必须做出改变 。同样,征信行业也需要改变,甚至人们对于信用的理解也需要改变。
大数据带来的也并不都是好处,斯克里费加诺也提醒说,必须要意识到有一些居心不良的人躲在互联网的技术后面,如果不采取措施的话,这些居心不良的人他们能够有更多的进行网上诈骗、网上盗窃的非法行为会更加猖獗。我们会看到更多的问题,所以我们现在必须要进行很好地观察,而且也是要意识到在 网络上还是有很多问题的 ,这也是我们所面临的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01