京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析的重点不是数据,而是问题
大数据分析最关键的不是数据,而是找到需要解决的问题,邓白氏高级副总裁、首席数据官安东尼·斯克里费加诺(Anthony Scriffignano)认为,任何一个拥有大量数据的公司, 不能随便就找个数据公司来分析,而是找到自己需要解决的问题 。
“ 他们可以告诉你很多事情。但是不解决任何问题。 ”2015年 12月24日,斯克里费加诺接受财新记者采访时表示,作为国际上最著名、历史最悠久的企业资信和金融分析公司,邓白氏已经和数据打了174年交道,虽然在大数据这一概念之初他们就开始使用这个工具,但是现在面临的最大困难还是,如何用适当的方式解决合适的问题。
1841年成立于美国新泽西州的邓白氏公司一直不断通过技术创新开拓信用评估市场,分拆上市前的穆迪公司、美国最著名的黄页广告公司丹尼雷公司和美国最大的市场调查公司尼尔森公司,都是其子公司。邓白氏的客户中,不仅包括全球最大的、最成功的企业,也有中等规模的和刚刚成立的小公司。
大数据分析,则是目前邓白氏所提供的万千种产品之一。斯克里费加诺说,现在全世界的数据中, 85%的数据是非结构化的 ,而我们过去重点分析的结构化数据,只是其中的15%,只是基于这些数据做出决策已经不合时宜。而通过大量非结构数据,不仅可以挖掘新的商业信息,也可以找到新的商业模式,这在10-15年前是完全不可能的,那时甚至没法描述这些数据。
他举例说,通过大数据分析,可以帮助客户找到新的合作伙伴,找到服务的重点,找到新的顾客。很多时候,他们不仅需要客户提供的数据,还要参考自己手头所掌握的数据,来做出正确的分析。“这项工作几乎永远没有终点, 你要想比竞争对手领先一步,永远都是一个挑战 ……虽然我们没法掌握地球上所有企业的信息,但是我们掌握的数据肯定比地球上任何企业都多。”斯克里费加诺说。
在乌镇的世界互联网大会上,斯克里费加诺碰到许多中国的同行,虽然他们并不都是从事大数据分析服务的公司,但也都在使用大数据,所面临的挑战也是相似的。例如,如何面对新的数据形式,如何面对高度动态化的数据等,“大家关心的主题是云计算,如何使用新的分析工具,但是很少人讨论 我们所面临的挑战究竟是什么,应该解决的问题是什么 ,” 斯克里费加诺说。
对于正在或者希望投入大数据行业的同行们,斯克里费加诺有三个建议。首先就是,最重要的不是数据,而是问题。“ 这里有一大堆数据,我们来分析一下有什么意义 ”,这样是不可取的。要从数据中发现,是否有新的商业行为,要知道自己希望解决什么问题,应该是“ 有没有可能发现新的商业行为 ,能帮助我们了解什么样的企业在增长,什么样的企业在走下坡路”。
第二是需要找到正确的人,他们拥有合适的技能,现在很多人都以数据专家自居,都在谈大数据分析,其实他们 只是给自己加了一个新的标签 ,他们未必拥有把大量繁杂的数据放在一个平台上分析的能力。
第三是领导者的能力要随时更新。现在行业变化太快,现在能够生存,不证明5-10年后能生存。当电视机从CRT过渡到液晶电视的时候,很多的企业主对后者的技术是一无所知的,所以就像恐龙一样消失了。所以领导者要避免自己变成恐龙,就需要不断了解新的技术,提出新的问题,因为这个行业变化太快了。
在这次世界互联网大会上,斯克里费加诺曾经表示,应对海量信息的挑战,需要创新,不仅是做新的事情,也可以 用新的方式来做以前的事情 。有很多没有解决的问题,需要 把它们分解 ,虽然可能还没有解决,但是问题已经变小了,这也是邓白氏现在正在从事的工作。
例如很多小微企业,通过大数据征信报告,成功在银行获得了无抵押贷款。而在迅速变化的时代,银行业本身存在的必要性也受到了挑战。斯克里费加诺说,他曾经问一个同行,10年以后会不会有银行,这位同行的答案是,除非他们做出改变。而在斯克里费加诺看来,银行当然会继续存在,但是 银行业也必须做出改变 。同样,征信行业也需要改变,甚至人们对于信用的理解也需要改变。
大数据带来的也并不都是好处,斯克里费加诺也提醒说,必须要意识到有一些居心不良的人躲在互联网的技术后面,如果不采取措施的话,这些居心不良的人他们能够有更多的进行网上诈骗、网上盗窃的非法行为会更加猖獗。我们会看到更多的问题,所以我们现在必须要进行很好地观察,而且也是要意识到在 网络上还是有很多问题的 ,这也是我们所面临的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06