京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为什么我们应该杀死“大数据”?
大数据在今年是很火的一个概念,这个概念不同的人有不同的见解。然而我们对大数据的关注是不是有点偏离了正常的轨道呢?现在许多的讨论都是围绕着“大数据”这个词来展开,人们似乎忘记了大数据是要为我们解决实际问题的,我们更应该讨论贴近实用的方面。
老实说我以前是一个经常滥用大数据这个词的人,似乎每一个新成立的企业都与大数据有关,就连风险投资公司也更愿意投资关于大数据的公司。
为什么我现在越来越不喜欢“大数据”这个词了?因为我认为这个词条本身是落伍的,它的定义由一系列的单词构成,但这些单词并没有正确的反映了目前数据界发生了什么。现在,我们应该考虑的不是“大数据”,而是应该想一想我们能用数据做些什么。这些与运用分层数据创建的应用有关,也与这些应用能体现的深层意义有关。我不是第一个对大数据的夸夸其谈感到厌烦的人,我与大量的投资者、数据专家以及企业家聊过,很多人与我有同样的感受。
根据Vincent Mcburney的说法,“大数据”一词起源于宾夕法尼亚大学的Francis Diebold,他在2000年7月写的一篇关于金融建模的文章中首度提及此词。从那时到现在已经超过了10年的时间,在此期间关于人们该如何运用大数据,发生了太多的事情。
大数据不仅仅只与大企业有关。事实上任何一个公司,从Facebook、Twitter这种巨人公司到Cloudera、Box、Okta这种快速发展的创业公司都是大数据公司,依照大数据的定义来看。每个有着一定用户规模的公司都在搜集大量的数据,也就是“大数据”。在一个数据是产品创新关键的世界,成为一个“大数据”公司并不算什么独特的事,老实说一点都不能说明一个公司的具体状况。
根据IBM,大数据包括四个方面:数量、速度、多样化以及真实性。在这个充满了社交网络、电子商务以及企业数据存储的世界,这些因素在许多领域都有被应用到。大数据真的不能代表全部,既然我们有这么多不同的方法来筛选及使用这些大量数据的话。
这并非是低估在整理、分析大量数据方面创新的重要性。事实上,许多产业的未来,包括电子商务与广告,都要依赖于对数据的处理。像GoodData、Infochimps、Moat等这些创业公司,都在研究让数据能更好的为人所用的方法。
另一点值得指出的是,在大数据这个词发明之前,像IBM、大型零售商、金融巨头等大型企业就已经开始在分析大量数据上面花时间了。所以让我们思考出另外一种方式来描述需要处理大量数据的创业公司吧,或许是和应用的实际功能与数据的对比有关。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08