京公网安备 11010802034615号
经营许可证编号:京B2-20210330
社交媒体数据挖掘:尚未开发的潜力
《社交网站的数据挖掘与分析》一书的作者Matthew Russell指出,尽管针对社交媒体数据挖掘的讨论非常多,但真正采取行动的只占少数。针对数据挖掘感知的困难是阻碍社交媒体数据挖掘的一大原因,而Russell认为这样的想法是不对的。拿Twitter来举例,使用熟悉的编程语言Python来对Twitter社交媒体数据进行挖掘并不需要太高级的开发者或数据科学家技能。
对社交媒体数据进行挖掘能够帮助企业获得关键信息,提出API请求,分析销售数据能够让企业使用其中的洞察来驱动进一步的创新。本文中,Russell将为开发者介绍一些关于社交媒体数据挖掘的经验。
在首次进行社交数据挖掘时,Russell建议使用Python语言,因为其语法更加简单,数据结构能够与文本数据兼容。大多数社交媒体实体会以JSON(JavaScript Object Notation)的格式返回数据,它是一个灵活直观、基于文本的数据格式,经常应用于Web环境以便通过网络进行简单或者复杂数据结构之间的通信。Python的核心数据结构与JSON非常相似,因此在处理社交媒体数据的时候不存在门槛问题,开发者可以非常简单地创建请求。
每一个社交网络媒介都会为数据挖掘提供一个价值主张,但Russell认为Twitter是最佳的切入点。这与国内的微博平台相类似,它们都有简单且不对称的“加关注”模式,同时有海量的活跃用户基础(Twitter每月的活跃用户数量大概在2.32亿),这对于数据挖掘来说几乎是完美的条件。Russell将这样的应用比喻成繁忙的街道,每个街角都会有人在聊天,在这些人当中总会有一些有用的信号可以梳理出来。
从开发者的角度来看,Twitter特别适合进行数据挖掘(微博与其有很多相似之处),主要由于以下三个原因:
Twitter的API设计优良,访问简单
Twitter数据格式非常方便进行分析
Twitter的数据使用条款相对宽松。他们认为每一条tweet都是可以公开的,任何人都可以访问。另外不对称的关注模型使得你可以访问任何一个注册用户,而无需他通过你的关注请求。
Russell表示,Twitter的易用性加上海量的活跃用户,使得它蕴含了难以估量的价值。然而这些潜在的价值没有得到充分的挖掘,公司管理者以及开发人员也没用把握住社交趋势给他们带来的机遇。
目前Twitter的数据几乎全都用于声誉管理、品牌推广以及舆情分析,换句话说就是用于广告。Russell认为,随着社会化研究的逐渐深入,当你每月有2亿多活跃用户(每天的活跃用户占比更大)的时候,其实除了广告之外它还隐藏了许多其他的机会。
Russell将Twitter形容为一张兴趣图谱,或者说是一幅兴趣肖像画,它展示了个人以及小团体的兴趣所在。对于小规模群体来说,兴趣图谱可以用来预测购买行为;对于大规模群体来说,它可以用来分析社会化趋势。如果你把“加关注”的关系理解为“我对他有兴趣”的关系(事实上也的确如此),你就拥有了某种非常强大的数据聚合。当兴趣图谱运用到海量规模群体时,它潜在的有价值的洞察力就超越广告本身了。对如此体量的数据进行挖掘,它可能并不会带来直接的购买行为,但它能帮助企业理解市场的走向,特别是一些特定领域市场。目前就有一些对冲基金是在Twitter数据分析基础上设计交易模型的,这可以帮助他们做更智慧的投资。
在Russell看来,Twitter的API价值也不容忽视。API是第三方接入Twitter平台的初始点,也是创新的前提。世界上很多聪明的人会比Twitter公司本身有更多好的点子,Twitter提供的API给了他们更多机会。虽然API的数量足够多,但事实上它也没有得到充分的利用。从一个人起家的创业公司到拥有诸多开发人员的大型企业,每个人都可以利用这些资源或使用第三方的产品来进行创新。
无论是对个人还是对群体,Twitter自我组织、快速增长的数据池为我们提供了关于趋势和兴趣的直接洞察力,但它尚未完全捕获开发人员的想象力。而社交媒体数据挖掘所带来的价值,Twitter只不过是冰山一角。Russell希望企业能够开始把广告作为达到某种目的的手段,他们能够在社交媒体数据创新中发现真正的价值所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27