京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学有很多很多定义,最基本的定义就是computer science,还有数学、统计、目标、知识,这是最基本的,再说多了就过分了。一般对于年轻人来说,现在不可能到那么细的程度,我们应该变成一个通才,哪个公司都愿意要我们。清华大学之所以现在变成这个样子,就是因为在1952年院系调整的时候,每一个专业就是一个生产线,弄的很细很细,没有一个更宽广的视野。大数据,所谓大就是这个样子。数学关键是逻辑而不是具体的方法,不是你怎么求多项式的根,而是它的基本逻辑,它的数学语言,这一点要懂。数学逻辑是各种学科当中最严格的逻辑,无论你学逻辑的,学物理的,学什么的,文科学逻辑的肯定是不如学物理的,学物理的逻辑肯定不如学数学的,所以你要跟学数学的辩论的话就很困难。文理分科造成没有逻辑的文章,没有逻辑的法官。
对那些高科技公司来说,数据科学家可以挖掘新的信息,帮助公司开源节流。每个公司都是要这样的,所以它需要的是人才,这是关键。我们说数据科学,当然科学也有艺术,这两个都有关系。科学意味着没有权威,不要迷信那些权威,中国人喜欢崇拜权威。任何科学研究的目的是基于数据,颠覆旧的理论,这样才能往前进,所以你必须要有科学精神。
诺贝尔物理奖没有一个是承认过去怎么样的,而是推翻过去的事情,这是科学,是颠覆性的。
如果你擅长数学,有很清晰的逻辑思维能力,有技能组合,就可能当上数据科学家。投票显示,数据分析和数据挖掘是最大的求职法宝。数据科学火爆的原因是,尽管高科技公司都有自己的数据科学团队,但是那些非科技公司和很大的公司也需要做这些东西,他们需要能做这些东西的人。现在关键是人,关键是你们怎么样让自己成为被需要的人。
另外,你是不是做数据科学家的材料?相比专长于任何特定编程语言,泛型变成技巧更重要。最重要的素质就是能快速学习东西。在这个时代技术发展的突飞猛进,语言很快会过时,新的语言会迅速普及,所以学习东西快的人比单独领域的专家更有前途,你有这个潜力你能干什么事。我要看你这个人的潜力,而不是你知道什么。知识再多你也超不过一个硬盘吧?但是硬盘没有创造力。如果你每天花大量的时间编程,分析控制面板上的数据,获得相关知识和信息,如果你对这样的工作感兴趣你就适合干这行。现在我没事就处理编程数据,我看了这个以后觉得自己有点像。如果仅仅是想拿高工资,那可能觉得这样的日子就很苦了。实际上不光是这个工作,干任何工作,即使是坐牢你也要把它当成乐趣。我有一个朋友,他就被上级陷害之类的坐牢了,现在坐牢很容易。他后来就跟我说,他觉得这件事情很享受,就是你怎么看这个问题了。你要是发愁过一天也是一天,高高兴兴的过一天也是一天,所以你要考虑怎么活才合适。
真正适合干这一行的人,会在业余时间里编程序、分析数据,他的目的就是自娱自乐,而不是为了要拿着什么学位,拿到什么样的头衔,最终他自己把自己的价值就提高了。如果你爱的不是数据本身,而是它给你带来的高薪,那你很难跟上来的人来竞争了。要学会干一行爱一行,每个人都应该学会热爱数据,即使是为了自己的事业前途也应该这样想,为了自己的心理也应该这样想。
还需要什么呢?我刚说了,学习能力比知识更重要,欢迎挑战、乐于攀登。如果没有挑战了,没有古怪的数据,我觉得很无聊,有点挑战的我就很高兴,我相信很多人都这样,这样活着才有意义,像猪一样的活着没有意义。你像富二代开着宝马到处飙车,他是找不到活着的意义啊,穿名牌什么的,是让别人觉得你有点价值,实际上别人一看你更没有价值了。马克思的座右铭“怀疑一切”,在怀疑中成长,我们国家从来不倡导这个,为什么咱们不宣传这个?不要给自己贴标签,就是我学什么方向的,别的不搞,岁数大了,学不会了,很多人都有这样的借口,这实际上是借口,我现在每天都在网上学东西,所以我现在教的东西总是新的,我的书一版再版,我现在大概写了有30本书了,为什么再版,因为我发现原来的有错或者不全面,我一定要把事情说的更透彻一点,说的更好一点。
计算机最根本的就是领域知识,你必须了解领域知识,你才能够知道该怎么做
如果你仅仅是一个干巴巴的统计学家,你不了解统计,你可以做很多荒谬的事,不了解实际问题。有一个例子,在医学杂志发表的一个很有名的文章,说如果父母在婴儿房间内睡觉总是开着灯,婴儿就会有高度近视。后来再发现,凡是父母高度近视的,往往有给小孩开灯的习惯。到底什么造成小孩高度近视,现在你们知道的,但是当时的人不知道,所以要有很深刻的领域知识,只有明白目标领域知识的人才能明白它的意义,知道往哪个方向努力,去判断分析结果的可能性。如果没有领域知识主导的人分析肯定有误导,无论什么地位。在中国院士到哪儿都去发表理论,就像金正恩到哪儿都发表指示一样。所以用数据来说话,其他的一切都是废话。我每年看到很多很多的文章,包括一些大赛,这个赛那个赛,好多都是莫名其妙的假定,就连31个省市自治区的数据都假设是正态分布,这31个省市自治区的就不是样本,更不用说是正态分布。
作为科学就这么多内容,对年轻人来说就是要明白这些基本的东西,太花哨的东西就没意义了,那就是扩展了也不是没意义,不要钻进去出不来了。
你离得越远看得越清楚,站得越高了解的全局越好
不要太具体了,不要迷信这些炒作的新名词、新概念,用自己的大脑,用常识判断,想想合不合理。过去某个人的经验是他的经验,不是你的经验,他在特定环境、特定时间有作用,但不是现在。如果你要跟风就意味着永远是跟随,也绝对不会有出息。 炒作没人管,只要有观众给你鼓掌,观众回去一脑袋浆糊,但是每个人自己不能糊涂。第一原料就是数据,什么是数据?照片都可以变成数据。
要有基于数据的批判性思维,而不是基于主观经验、权威或者是局部的知识,也不是迎合取宠式的思维。在中国取宠思维很厉害,你说GDP增加多少就是多少,这不是说的,要有人做。工具就是刚才说的能力加计算机系统加泛型。
个人还要有快速的自学能力和对数据分析的爱好
我从来没学过计算机,也没学过计算机编程。英文都没学过,全都是自学的,所以我对自学很相信。现在我教的东西都是最近这几年的东西,我现在实际上比一个全职教师教的课还多,但是我教的东西好多都是前一天网上才出现的,我觉得有价值,第二天就放到课堂上了。只有不断的自学,不断的学习才能当老师。如果你不断的跟学生演示80年前的推导过程,显示你的记忆力好,那不是好老师。
什么人最快乐?被人需要,这是很重要的,就是你得有价值。因为你的专长、能力、善良、尊重、爱心、品质、性格、智力、分享。今天早上他们也讲了,就是在公司里跟人家能相处,至少你得是可爱的。还要关心他人,能让别人快乐的人是快乐的。如果买点东西在宿舍里藏在被窝里吃,那高兴吗?如果跟别人分享的话会更高兴。尊敬别人的人是快乐的,一定要尊敬别人。如果大家都尊敬别人的话,社会上任何犯罪都没有了,因为犯罪都是偷、抢、杀,侮辱别人这都是不尊敬别人的。诚实坦荡的人是快乐的,这就是不能撒谎,永远不能撒谎。还要心胸开阔,不去计较一些小事情。最关键的就是爱人如己,你爱人不是因为他能爱你回来,也不是因为他可爱,而是对任何事情都尊重,这是最根本的一点。如果这点你要做到了,如果人人都能做到,那世界就太理想了。不管怎么样,我希望大家能够快乐。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27