
大数据知识科普:什么叫大数据
近些年来,大数据越来越火热,但是有不少网友对大数据基本的概念还有些模糊。从字面上来看,大数据就是比较大的数据。那么这个“大”到底是指形状大,还是数量大呢?同时,这个大数据是怎么来的,它到底又有什么样的作用呢?下面我们将一一解答。
大数据产生的背景
进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上过《纽约时报》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。
最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。” “大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。
大数据到底是什么
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。维基百科的定义,大数据是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
简单来说,大数据具有4V的特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
根据国际数据公司(IDC)的《数据宇宙》报告显示:2008年全球数量为0.5ZB,2010年为1.2ZB,人类正式进入ZB时代。更为惊人的是,2020年以前全球数据量仍将保持每年40%多的高速增长,大约每两年就翻一倍,这与IT界的摩尔定律极为相似,姑且称之为“大数据爆炸定律”。
上面内容中提到了“ZB”的概念,那么它具体是指什么意思呢?
我们平常所熟知的数据的大小是“G”、"M"等,比如说,一部高清电影大约1个G左右,一首歌曲的大小为几M。
1G=1024M
1M=1024KB
1B=8bit
bit中文名称是位,音译“比特”,是用以描述电脑数据量的最小单位。
bit 来自binary digit (二进制数字),由数学家John Wilder Tukey提出(可能是1946年提出,但有资料称1943年就提出了)。这个术语第一次被正式使用,是在香农著名的论文《通信的数学理论》(A Mathematical Theory of Communication)第1页中。[1]
二进制数系统中,每个0或1就是一个位(bit)。
上面KB中的“B”就是字节的意思,英文为“byte”.我们电脑文档中的汉字占两个字节,英文字母占一个字节。路遥先生的《平凡的世界》这本书约有一百万字,换算成字节就是两百万个字节,为2000000B。
而具体的换算方法为
1KB=1024B;1MB=1024KB=1024×1024B。其中1024=210。
1B(byte,字节)= 8 bit(见下文);
1KB(Kibibyte,千字节)=1024B= 2^10 B;
1MB(Mebibyte,兆字节,百万字节,简称“兆”)=1024KB= 2^20 B;
1GB(Gigabyte,吉字节,十亿字节,又称“千兆”)=1024MB= 2^30 B;
1TB(Terabyte,万亿字节,太字节)=1024GB= 2^40 B;
1PB(Petabyte,千万亿字节,拍字节)=1024TB= 2^50 B;
1EB(Exabyte,百亿亿字节,艾字节)=1024PB= 2^60 B;
1ZB(Zettabyte,十万亿亿字节,泽字节)= 1024EB= 2^70 B;
1YB(Yottabyte,一亿亿亿字节,尧字节)= 1024ZB= 2^80 B;
1BB(Brontobyte,一千亿亿亿字节)= 1024YB= 2^90 B;
1NB(NonaByte,一百万亿亿亿字节) = 1024 BB = 2^100 B;
1DB(DoggaByte,十亿亿亿亿字节) = 1024 NB = 2^110 B;
从上面可知, 1ZB(Zettabyte,十万亿亿字节,泽字节)= 1024EB= 2^70 B;,这个数量级实在是恐怖,可想而知大数据到底有多大。
大数据有什么用呢?
大数据的应用其实早已渗透到人们生活中的方方面面:亚马逊运用大数据为客户推荐商品信息,阿里用大数据成立了小微金融服务集团,而谷歌更是计划用大数据接管世界??当下,很多行业都开始增加对大数据的需求。大数据时代不仅处理着海量的数据,同时也加工、传播、分享它们。不知不觉中,数据可视化已经遍布我们生活的每一个角落,毕竟普通用户往往更关心结果的展示。伴随去年底百度地图采用LBS定位春运的可视化大数据,就引起了学界对新闻创新和大数据可视化的热议。
就拿我们手中的智能手机来说吧,它既是一款数据采集工具,同时也是一个多媒体的数据可视化展示平台;现在的新闻播报也越来越多的用到数据图表,动态演示且立体化的呈现报道内容;影视剧和电子游戏频繁出现的数据可视化元素,无疑让作品的科技与未来感更加丰满;教育与科普方面则是数据可视化更大的应用领域,人们开始对单调保守的讲述方式失去兴趣,期待更加直观、高效的信息呈现形式,数据可视化正好弥补了这项需求。在智能手机、平板电脑和车载电脑等平台日渐普及的当下,新的交互手段将会成为数据可视化的趋势。
数据可视化起源于1960年计算机图形学,那时候人们使用计算机创建图形图表,可视化提取出来的数据,可以将数据的各种属性和变量呈现出来。随着计算机硬件的发展,人们创建更复杂规模更大的数字模型,于是乎发展了数据采集设备和数据保存设备,而此时也需要更高级的计算机图形学技术及方法来创建这些规模庞大的数据集。随着数据可视化平台的拓展,应用领域的增加,表现形式的不断变化,以及增加了诸如实时动态效果、用户交互使用等,数据可视化像所有新兴概念一样边界不断扩大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04