京公网安备 11010802034615号
经营许可证编号:京B2-20210330
初创公司必须重视大数据潜力的四大理由
随着物联网在世界各地渗透,大数据、数据计算和数据管理浮现在科技领域的最前沿。数据无处不在,以万亿度量。对数据湖的正确分析有助于企业做出明确的决定,从而提高生产率,进而刺激投资回报率快速增长。
来自福布斯的统计结果显示:89%的商业领袖认为大数据将像互联网一样给业务带来革命性的变革。强有力的迹象表明企业已经开始利用大数据带来机遇。
几年后,对所有的行业领导者而言,从这个巨大的机遇中受益都是一个巨大的挑战。随着时间的推移,大数据行业热度越来越高,也在很多领域帮助了初创公司,这些领域包括:库存管理、营销、运营、客户服务和广告等。以下是关于企业受益与大数据的有趣例子:
用大数据分析校正增长
大数据可以带来业务增长模式的显著转变。业务中已经存在的销售和营销数据可以解释很多客户的要求。为了获取完整的客户需求,必须进一步组织和策划。
通过推出新的产品和服务,大数据可以帮助初创企业更快得识别、触及正确的目标市场,提高市场投资的回报率。使得企业能更快理解客户需求并按照客户的行为模式提供更新和产品。
用正确的工具跟踪新客户
大数据应用的日益普及,从巨量数据中寻找最佳数据和分析数据的自动化过程有助于预测客户喜好,进而满足客户需求。使用正确的工具分析竞争对手,跟踪社会媒体以及研究销售报告等可以发现目标用户的购买模式。
例如:利用谷歌分析可以更好得理解网站流量,MixPanel有利于衡量手机应用程序使用模式的好坏,利用SproutSocial和Hootsuite可以追踪社交媒体活动的影响。InsightSquared可以与诸如QuickBooks、Sales Force之类的业务工具捆绑以取代电子表格进行数据分析,从而重组、提取可操作型数据。
经济型实时解决方案
大数据技术通常需要付出昂贵的代价。然而,随着创新技术在市场上应用,大数据成本将会降低。各种云计算和软件即服务的使用使组织能更好得利用大数据而不需高额的成本。
高德纳公司(Gartner)最近指出:投资大数据的公司比例上升。由于低成本云计算解决方案的出现,初创型企业可以跨地区进行大数据战略而不需要花费基础设施成本。无需投资任何资源和服务器,企业就可以利用大数据。
以有限的预算提高生产力
初创型企业没有犯错的机会。他们必须花好每一分钱。大数据技术允许客户和用户用有限的预算进行“尝试-失败-学习-重新开始”的循环。除了随时随地获得企业经营经验外,初创型企业也可以减少市场和广告宣传的成本。
用这种方式,组织可以更加积极得应对市场变化的需求并有强健的设施。例如,基于云计算的设施可以用来在推出产品的同时执行完整的活动,大数据能力可用来提取来自社交媒体和其他渠道的实时信息,并使得企业更好得管理目标市场。因此,初创型企业可以在短时间内比竞争对手更快得增长市场份额。
结论
在全球经济的每个领域中,数据无处不在。数十亿的传感器集成在物质世界的智能汽车、手机和工业机器等设备中。这些设备在互联网时代中被创造和利用。来自世界各地的不同社会阶层都能按需及时连接到大量可用的数据。
在制作和完成商业计划时,考虑大数据如何适应结构是一个明智的决定。这时,其他日常任务看似关键,但从长远来看,花时间规划如何大数据技术是必须的,因为大数据能给你的业务带来巨大的变化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01