
初创公司必须重视大数据潜力的四大理由
随着物联网在世界各地渗透,大数据、数据计算和数据管理浮现在科技领域的最前沿。数据无处不在,以万亿度量。对数据湖的正确分析有助于企业做出明确的决定,从而提高生产率,进而刺激投资回报率快速增长。
来自福布斯的统计结果显示:89%的商业领袖认为大数据将像互联网一样给业务带来革命性的变革。强有力的迹象表明企业已经开始利用大数据带来机遇。
几年后,对所有的行业领导者而言,从这个巨大的机遇中受益都是一个巨大的挑战。随着时间的推移,大数据行业热度越来越高,也在很多领域帮助了初创公司,这些领域包括:库存管理、营销、运营、客户服务和广告等。以下是关于企业受益与大数据的有趣例子:
用大数据分析校正增长
大数据可以带来业务增长模式的显著转变。业务中已经存在的销售和营销数据可以解释很多客户的要求。为了获取完整的客户需求,必须进一步组织和策划。
通过推出新的产品和服务,大数据可以帮助初创企业更快得识别、触及正确的目标市场,提高市场投资的回报率。使得企业能更快理解客户需求并按照客户的行为模式提供更新和产品。
用正确的工具跟踪新客户
大数据应用的日益普及,从巨量数据中寻找最佳数据和分析数据的自动化过程有助于预测客户喜好,进而满足客户需求。使用正确的工具分析竞争对手,跟踪社会媒体以及研究销售报告等可以发现目标用户的购买模式。
例如:利用谷歌分析可以更好得理解网站流量,MixPanel有利于衡量手机应用程序使用模式的好坏,利用SproutSocial和Hootsuite可以追踪社交媒体活动的影响。InsightSquared可以与诸如QuickBooks、Sales Force之类的业务工具捆绑以取代电子表格进行数据分析,从而重组、提取可操作型数据。
经济型实时解决方案
大数据技术通常需要付出昂贵的代价。然而,随着创新技术在市场上应用,大数据成本将会降低。各种云计算和软件即服务的使用使组织能更好得利用大数据而不需高额的成本。
高德纳公司(Gartner)最近指出:投资大数据的公司比例上升。由于低成本云计算解决方案的出现,初创型企业可以跨地区进行大数据战略而不需要花费基础设施成本。无需投资任何资源和服务器,企业就可以利用大数据。
以有限的预算提高生产力
初创型企业没有犯错的机会。他们必须花好每一分钱。大数据技术允许客户和用户用有限的预算进行“尝试-失败-学习-重新开始”的循环。除了随时随地获得企业经营经验外,初创型企业也可以减少市场和广告宣传的成本。
用这种方式,组织可以更加积极得应对市场变化的需求并有强健的设施。例如,基于云计算的设施可以用来在推出产品的同时执行完整的活动,大数据能力可用来提取来自社交媒体和其他渠道的实时信息,并使得企业更好得管理目标市场。因此,初创型企业可以在短时间内比竞争对手更快得增长市场份额。
结论
在全球经济的每个领域中,数据无处不在。数十亿的传感器集成在物质世界的智能汽车、手机和工业机器等设备中。这些设备在互联网时代中被创造和利用。来自世界各地的不同社会阶层都能按需及时连接到大量可用的数据。
在制作和完成商业计划时,考虑大数据如何适应结构是一个明智的决定。这时,其他日常任务看似关键,但从长远来看,花时间规划如何大数据技术是必须的,因为大数据能给你的业务带来巨大的变化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01