
1、如何做好数据分析?
数据分析师成长是通过“干”、"思"、“熬”出来的。干:多做。哪些是临时需求。你要做各种各样的分析;思:你在边干的过程中,要边思考,边总结,只有这种你才能沉淀。熬:通过时间的积累,你的商业意识、数据分析思维、技能得到提升,广积粮,缓称王,实现厚积而薄发。
2、如何做好数据挖掘?
数据挖掘和数据分析在我认为,都是实现数据价值的“工具”、“方式”。数据挖掘相对于数据分析来说,入门门槛会更高一些,对于数据挖掘方法,挖掘工具要求更高。但做好数据挖掘,参考数据分析。
3、需要看什么类型的书?
很从刚做分析师的朋友,但喜欢问:我想做好分析师要看什么样的书?这个背后的逻辑是不是说你看了别人推荐给你的书,你就可以成为很厉害的分析师。
我的观点是:书是一定要看,而且有机会的时候多看看书。但一定要明白看书你对的价值体现在哪?
但数据分析更多是干,实践中成长的。
4、做好数据分析需求什么样的技能?
我想做数据分析,一定要会SAS、SPSS、R吗?如果你不去做模型。
基本的统计知识肯定要掌握的,但分析师目前主要还是以SQL+EXCEL+PPT来完成一份分析报告。
5、什么专业才能做数据分析?
现在招聘数据分析大多数都是要求:计算机、统计学相关专业。但是我相信未来数据分析招聘的专业会越来越宽,而且很多管理类(营销、管理学、情报学等)专业毕业的人会是比较受欢迎的。因为当大家对数据分析理解越来越深的时候,会发现数据分析核心的能力还是在:分析数据,然后与商业结合。
6、数据分析的价值?
基于历史数据,来告诉相关人的业务情况是怎么样的,结合对于公司业务模式的理解,一起制定相关策略,帮忙公司实现业务目标。
基于公司内、外部的数据,结合分析师对于公司业务的理解、行业发展趋势的理解,提出公司及行业发展趋势,为公司制定相应的战略提供参考。
如果从精典的数据价值金字塔来说,如果你仅提供数据,你不是数据分析,那在做最最传统的BI的工作,给出数据。如果你给出了信息,恭喜你已经开始在做数据分析了,如果给出"知识"(在我认为,就是给你的观点,建议,方案,而且是基于数据得到的),欢迎你进入到数据分析师的世界。如果你能数据产品(对于什么是数据产品,我们后续再讨论)把知识深沉下来,bingo,你是一名出色的数据分析师。
7、数据分析,到底是分析什么数据?
分析公司内、外部的数据,内部的数据有以下几类(以电子商务为例):
1、流量数据或者说网站的点击流(日志)数据。
2、订单数据。
3、商品数据。
4、会员数据。
5、供应链相关数据。
6、客服数据。
不同公司对于数据收集的粒度、完整性不一样。是否所有公司都要把所有的数据都收集下来,我的观点是:如果允许,当然越多越好。但是很多是时候是要分析师对评估哪些数据需求收集,保存多久的数据。分析师一定要用一定ROI的意识。
那种数据都没有积累多少,就号称自己是大数据公司,号称通过大数据建议竞争优势,你觉得可能吗?
8、数据分析有几种角色?
数据分析:助理分析师、分析师、资深数据分析/数据分析专家、商业分析师;
数据产品经理:我特别喜欢这种角度,我觉得的真正的数据分析师,应该有产品的思维逻辑。因为不管你在做报表,报告,系统,那怕是一个简单的数据需求,你都可以理解为一种数据产品。(什么是产品,产品是解决目标用户的问题。请分析师都牢记这一点。)
数据挖掘:数据挖掘工程师、资深挖掘工程师;
9、什么样的人适合做数据分析?
除了之前我的一些文章讨论到的需要相关的基本的技能外,也许下面的内容对一个数据分析师成长更为重要:
1、看到数据有兴奋感的人。有兴奋感说明你有兴趣,那说明很会有意愿把数据分析好。
2、愿意学习的人。你分析的内容永远不会一尘不变,即使你分析的主题是相对固定,但业务是变化的,你需要不断的学习业务,同不同人沟通,吸收别人的观点。所以分析师一定要报着学习的态度。
3、逻辑思维较强的人。数据分析师想要把你的分析好,一定要有结论思维。
4、表达与沟通。因为数据分析最终价值的实现,一般来说不会是分析师亲自去制定或者实施。所以你一定很有条理、逻辑清晰向别人表达,让业务方认识到你分析结果的价值,从而影响业务方去愿意使用你从数据中得到的观点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18