
1、会计核算将不是财务部门的工作重点,一专多能、甚至多专多能才是财务人的发展方向。
信息化技术正在取代传统的会计核算,甚至更多的会计职能。通过网络技术,代理记账公司的一个会计可以代理150到300家公司的帐,这意味着有150到300个会计核算岗位消失了。这比机器人取代产业工人的速度还要快!这就是科技进步的力量!
可能有人会说,会计还有监督的职能,代理记账公司不可能履行这样的职能,所以大中型公司还是需要会计的。这话只能说在目前是对的,不远的将来还对不对就不好说了。事实上,完善的企业信息化系统会形成一个闭环,把内控制度嵌入,大多数的会计监督职能将被前置到每一个业务环节,相互控制,相互监督,这比传统的会计监督要更有效,更便捷。比如费用报销系统可以通过网络实时监控费用开支情况,报销人员不用再到处找人签字,更不用找会计审核单据;成本核算已经不是财务部门的事,ERP系统把一切都做好了,财务部门只需要确认一下,除非有确凿的证据,财务部门一个数字都不更改。所以未来的企业,信息化部门的地位会非常重要,由于IT行业精英们普遍偏科,现在的信息化部门更多的是在做后勤工作,如果信息部门多进几个内控方面的管理人才,实时评估一下系统是否有效运行,并根据经营方向和管理思路,定期不定期对系统进行升级改造,行使管控职能是很容易的事。
这么说是不是财务人就死定了?如果你还是个传统意义上的会计,不转型,你的职业生涯的确有点暗淡。如果你是个一专多能,甚至多专多能的财务精英,你的机会还多的是。细心的人会发现财务工作几乎与所有的管理工作相关。人力资源管理方面,人员进来就要用好吧,想留做人才就要激励,要激励就离不开钱,业绩考核、奖金分配、期权激励、股权激励。这都与财务相关。投资管理方面,从投资策略的制定到投资目标达成,都离不开财务工作。业务管理就更不用说了,业务员有指标有任务,他们最大的目标就是声称自己赚到了钱并拿到提成,财务就是要核实他们是不是真赚了钱,应该拿多少提成。还有预算管理、内控管理,都是以财务为核心的管理工作。如果你实在觉得财务工作没意思,只要本领在,转型也是分分钟的事,有人统计世界500强的CEO当中最多的是销售出身,第二多的人就是财务出身。上面提到的信息部门,将来也可能是财务人主导的。
2、集权化管理是未来的趋势
经常听到有公司领导说:以财务为核心!可真正做到的,我没看到过一家!因为事实根本不可能,是企业就要赚钱,所以谁能赚钱,谁是核心!财务核心不可能,但财务人也不能自我封闭,信息化时代,最大的特点之一就是信息爆炸,信息来的多,来的快。以前会计们要坐在办公室等单据,单据来了才能核算,才能决算。出了事,会计最经常说的话是:业务不提供,我怎么知道!现在不同了,信息技术给财务人提供了一个强大的数据库,我们随时可以把手伸到业务前端,实时分析,实时挖掘出有用的信息。以前分权是因为管理层级多,效率低,现在是全方位的业务共享,全方位的信息共享,分权反而不利于规范化、标准化。所以集中管控是未来的方向,财务人要做的是把手伸到业务前端,分析数据,挖掘信息,主要是挖掘有用的业务信息,为集中管控服务。
3、财务信息和业务信息的界限变的模糊,真正实现财务业务一体化
信息化时代,业务流程、财务流程、管理流程将有机融合,财务数据和业务数据将融为一体。过去和现在,财务部门提供财务数据,业务部门提供业务信息,信息独立。公司要对外发布一个报告,不同部门提供的数据可能都对不上,那个信息是对的都不知道。将来(其实很多大公司已经实现了)财务信息将不仅仅是几个干巴巴的指标,财务人员会挖掘出非财务信息,比如业务信息、市场信息等,因为财务信息源于业务信息,同样业务信息也会隐含着大量的财务信息,两者的界限会变的模糊。不远的将来,仅仅分析三张主表是远远不够的,财务分析会以业务分析为主,财务分析报告也会变的更加亲民。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18