京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1、会计核算将不是财务部门的工作重点,一专多能、甚至多专多能才是财务人的发展方向。
信息化技术正在取代传统的会计核算,甚至更多的会计职能。通过网络技术,代理记账公司的一个会计可以代理150到300家公司的帐,这意味着有150到300个会计核算岗位消失了。这比机器人取代产业工人的速度还要快!这就是科技进步的力量!

可能有人会说,会计还有监督的职能,代理记账公司不可能履行这样的职能,所以大中型公司还是需要会计的。这话只能说在目前是对的,不远的将来还对不对就不好说了。事实上,完善的企业信息化系统会形成一个闭环,把内控制度嵌入,大多数的会计监督职能将被前置到每一个业务环节,相互控制,相互监督,这比传统的会计监督要更有效,更便捷。比如费用报销系统可以通过网络实时监控费用开支情况,报销人员不用再到处找人签字,更不用找会计审核单据;成本核算已经不是财务部门的事,ERP系统把一切都做好了,财务部门只需要确认一下,除非有确凿的证据,财务部门一个数字都不更改。所以未来的企业,信息化部门的地位会非常重要,由于IT行业精英们普遍偏科,现在的信息化部门更多的是在做后勤工作,如果信息部门多进几个内控方面的管理人才,实时评估一下系统是否有效运行,并根据经营方向和管理思路,定期不定期对系统进行升级改造,行使管控职能是很容易的事。
这么说是不是财务人就死定了?如果你还是个传统意义上的会计,不转型,你的职业生涯的确有点暗淡。如果你是个一专多能,甚至多专多能的财务精英,你的机会还多的是。细心的人会发现财务工作几乎与所有的管理工作相关。人力资源管理方面,人员进来就要用好吧,想留做人才就要激励,要激励就离不开钱,业绩考核、奖金分配、期权激励、股权激励。这都与财务相关。投资管理方面,从投资策略的制定到投资目标达成,都离不开财务工作。业务管理就更不用说了,业务员有指标有任务,他们最大的目标就是声称自己赚到了钱并拿到提成,财务就是要核实他们是不是真赚了钱,应该拿多少提成。还有预算管理、内控管理,都是以财务为核心的管理工作。如果你实在觉得财务工作没意思,只要本领在,转型也是分分钟的事,有人统计世界500强的CEO当中最多的是销售出身,第二多的人就是财务出身。上面提到的信息部门,将来也可能是财务人主导的。
2、集权化管理是未来的趋势
经常听到有公司领导说:以财务为核心!可真正做到的,我没看到过一家!因为事实根本不可能,是企业就要赚钱,所以谁能赚钱,谁是核心!财务核心不可能,但财务人也不能自我封闭,信息化时代,最大的特点之一就是信息爆炸,信息来的多,来的快。以前会计们要坐在办公室等单据,单据来了才能核算,才能决算。出了事,会计最经常说的话是:业务不提供,我怎么知道!现在不同了,信息技术给财务人提供了一个强大的数据库,我们随时可以把手伸到业务前端,实时分析,实时挖掘出有用的信息。以前分权是因为管理层级多,效率低,现在是全方位的业务共享,全方位的信息共享,分权反而不利于规范化、标准化。所以集中管控是未来的方向,财务人要做的是把手伸到业务前端,分析数据,挖掘信息,主要是挖掘有用的业务信息,为集中管控服务。
3、财务信息和业务信息的界限变的模糊,真正实现财务业务一体化
信息化时代,业务流程、财务流程、管理流程将有机融合,财务数据和业务数据将融为一体。过去和现在,财务部门提供财务数据,业务部门提供业务信息,信息独立。公司要对外发布一个报告,不同部门提供的数据可能都对不上,那个信息是对的都不知道。将来(其实很多大公司已经实现了)财务信息将不仅仅是几个干巴巴的指标,财务人员会挖掘出非财务信息,比如业务信息、市场信息等,因为财务信息源于业务信息,同样业务信息也会隐含着大量的财务信息,两者的界限会变的模糊。不远的将来,仅仅分析三张主表是远远不够的,财务分析会以业务分析为主,财务分析报告也会变的更加亲民。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05