京公网安备 11010802034615号
经营许可证编号:京B2-20210330
需求和供给的相对平衡是国民经济的平稳的决定性因素。要达到这个平衡,国家提出要供给侧改革。看过很多供给侧改革的文章,大部门比较宏观,而笔者认为精细化推进”供给侧“改革需要产业发展推荐引擎系统和中国产业信息平台,需要大数据驱动,需要如大数据推荐引擎技术系统一样形成有效的正反馈机制,精细化解决这个问题,简言之:
1)全方位了解需求方(改革中的人民群众)“健康”(不是盲目需求)的需求;
2)全方位了解供给方有哪些产业满足这些需求。

很显然这是一个产业发展匹配人民生活需求的问题,产业结构调整,需要产业推荐引擎,需要发展什么,调整什么需要根据人民生活的需求、地区需求,提供他们喜欢的产品和服务,这和电子商务网站的个性化推荐引擎的原理非常相似。智能推荐引擎在电子商务网站的的基本逻辑是什么?是根据用户的需求,标签,行为,热门、兴趣、地域、探索等逻辑,在商城发现符合用户的产品,以预测群体的行为,推荐个人喜好的产品。在网上购物日益普及的今天,个人相对稳定的购买需求与网站提供的纷繁庞大的产品之间的矛盾越来越突出,“信息过载”(现在是产业过载)和“信息迷失”(发展方向迷失,或者说不够精细化)的现象日益严重。电子商务企业很好的利用了推荐技术来解决这个问题,推荐引擎根据用户标签,行为,购物时间、地点等各种外界因素而提供给消费者越来越满意的产品推荐。这种逻辑非常适合我们面前的供给侧改革,改革者如何准确的把握和利用当前老百姓的生活消费需求,通过优化投资结构、产业结构,在经济可持续高速增长的基础上实现经济可持续发展与人民生活水平不断提高。所以笔者认为供给方改革就需要供给方推荐引擎!
这显然这是需要大数据的思维,是一个大数据的问题,而不是口号和宏观的问题,需要数据说话,数据管理,数据决策,一边是老百姓需求发掘与预测,一边是产品生产数量,质量,和产业产能比例。如何建立这样一个算法模型,借力大数据和互联网技术,让生产的产品不过剩,消费者刚好喜欢。这是一个系统工程,不是一个感性工程,所以我们需要用科学的手段解决,先建立起模型,然后不断优化。
首先我们需要明确
1)供给侧改革目标
GDP发展多少?各行业发展提高多少?人民有哪些需求?各种需求数据是多少?比如几套房子,几辆车子,这些全部需要根据13五规划做大概的计划,好让供给方改革有个目标,有数据可依,有数据可管理,有数据决策。
2)供给侧改革推荐引擎算法模型;
建立产业发展推荐看板,根据的确老百姓的需求和现有产业发展情况,推荐企业重点发展哪些产业,哪些行业,哪些服务,区域经济发展首先要自己自足(生活必须品),然后有自己的特色。例如西北地区服装生产落后,依靠南方企业服装生产满足西北人的服装需求,虽然物流很发达,但是还是耗能很大,运输成本较高,一些生活的必须品最好能够实现本地化生产;区域经济发展特色经济是说根据,本地区特色,组织有效的生产改革。例如甘肃陇西地区,首先要本地区的百姓的基本需求的自给自足,然后大力发展发展药材企业。并集中发展地产企业,让百姓集中住房,推进农业规模化种植。甘肃地区人民的居住和水资源可以集中起来解决。而不是各自为战。
再如:去年的的“双十一”,某大型外资超市在天猫卖出了224万升进口牛奶,接近中国人每天液体奶需求量的一成;不仅奶粉,日本马桶盖、韩国化妆品、美国手机等都在最畅销的“海淘”商品中名列前茅……这并非简单的“崇洋媚外”,它反映了中国人在生活水平提高后对消费产品质量的重视,更折射出中国长期以来“供给侧”不足的矛盾。“这说明需求已经发生了变化。”目前我国的产业结构比较低端,高端的产能需求、高质量的产品,国内供给解决不了;而供给的结构也出了问题。我国大量的供给产能是过剩的,而且是一种低端的产能过剩。“所以,现在要做的就是从供给端进行改革。”通过这样的数据分析,我们就需要加强供高端产品的生产。
这种模型要考虑当前,未来5年,十年的需求发展和变化,一旦建立,就可以分短期,中期和长期的战略进行实施。全国经济发展一体化,计划加执行。地方经济发展市场化等发展策略,把这些策略确定为算法,通过数据公式去执行去不断的调优,实现理念行为化,行为制度化,制度信息化,精细化、科学化是长久之计。
3)行业改革算法模型,行业不同改革的模型也不同,因此需要精细化改革思路,不能一刀切,需要数据说话;
工业供给侧改革模型
农业供给侧改革模型
金融供给侧改革模型
房地产行业供给侧改革模型
以房地产行业为例,”要化解房地产库存,促进房地产业持续发展”。这是对房地产作为支柱产业的再次确认。促进房地产业持续发展,不仅因为这一行业能带动钢铁、水泥、电解铝等许多下游产业的发展,化解这些行业的产能,有效拉动就业,还在于从推进“人的城镇化”考量,房地产业的发展是让2.5亿缺乏相应市民权利的城镇常住人口能真正定居下来的必要物质前提。这是在调控层面消除供给制约。
制造业供给侧改革模型
服务业供给侧改革模型
文化产业供给侧改革模型
电影行业供给侧改革模型
如下:
其一,全国经济指标,根据权限,联合国家重要的统计部门,了解全国的经济指标;其二,产业数据查询;其三,行业数据查询;其四,区域经济查询、区域经济发展推荐;其五,经济指标发展分析;这个平台的建立有利于,国家供给侧改革的科学化落地。去年中央经济工作会议强调,2016年及今后一个时期,要在适度扩大总需求的同时,着力加强供给侧结构性改革。会议认为,2016年经济社会发展特别是结构性改革任务十分繁重,战略上要坚持稳中求进、把握好节奏和力度,战术上要抓住关键点,主要是抓好去产能、去库存、去杠杆、降成本、补短板五大任务。平台的建立有利于实现这些目标。
最后我想说,供给侧改革,类似国家NRP(国家资源计划),因为国家的人们的需求在一年之内基本是可以预测的,国家的资源也是相对比较固定的。如何管理,匹配,非常关键。资源丰富,需求简单的时候管理起来相对容易,资源复杂,需求包罗万象的时候管理起来就需要精细化,没有大数据,没有这样的产业调整推荐引擎的思路实现起来举步维艰,或者无从下手。
因此:精细化推进”供给侧“改革需要产业发展推荐引擎系统和中国产业信息平台!
以上的思路还比较粗浅,但笔者想要说明一个问题,那就是要进行精细化,数据化改革。学习电子商务网站推荐引擎的商业逻辑完善改革的算法模型,持续优化,正向反馈。精细化的中国梦可以比较清晰分阶段量化实现。
但又或许这是当下一种错误的提法。所以欢迎沟通 张涵诚微信:zhanghanc
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22