京公网安备 11010802034615号
经营许可证编号:京B2-20210330
经典的二八法则和ABC分析法
数据分析方法不是讲究高端大气上档次,而是讲究实用,并且是结合业务背景的实用方法才是最好的。只要实用,即便是最简单的排行榜、二八法则分析也可能是非常好的分析方法。很多刚刚毕业学统计的同学,在刚开始工作的半年甚至一年内往往比较迷茫,其一是自己在大学中学到的那些分析方法在实际工作中往往用不到或用得很少?其二是他们总想挖出一个“啤酒与尿不湿”式的经典案例才叫数据分析。这说明说明大家不熟悉业务,不了解数据分析是以实用为最高准则的。
每次培训的时候我都会问学员两个问题:
1、你了解什么是二八法则吗?
2、你在实际的工作中使用过二八法则来做分析吗?
前前后后我问过好几百人,基本上100%的学员都了解二八法则,但是只有不到5%的学员在工作中曾经利用二八法则做过分析。二八法则是最简单、最广泛的一种分析方法,本应该广泛应用,但是大家把它当空气了。
二八法则可能是最简单、最有知名度的分析方法之一。大部分人都能随口说出几个自认为的二八法则数据。但是“20%的人用脖子以上挣钱,80%的人用脖子以下赚钱”,这不是严格意义上的二八法则,只能算二八比例。同样20%的人是富人,80%的人是穷人这也是二八比例,非二八法则。
二八法则是一种不平衡法则,即20%的对象产生80%的效果,20%是对象,80%是效果,前后不是一个范畴。这些才是真正的二八法则实例。
20%的客户贡献了80%的利润,20%的客户即为利润指标的重点客户;
20%的企业员工拿了公司80%的薪水,所以大家要做奋斗,期待早日成为管理层;
对女孩子来说,80%的时间只穿衣柜中20%的衣服,所以女孩子总感觉衣柜里面永远“少”一件衣服;
办公室中,80%的时间我们只是在20%的区域活动,所以这20%区域的地毯会更容易脏,也更容易破裂,有经验的物业人员会给这些地方单独铺一块地毯;
培训讨论的时候,80%的发言是由20%的人阐述的,有些人说起来就没完,而有些人却惜字如金。所以对一个有经验的培训师来说,他知道什么样的问题该提给什么样的学员。
二八法则的作用是找到对象中的重点因素,将对象分为重点和非重点两个部分。它让我们的管理更有重点,也更有效率,所以常常用在数据分析、销售管理、个人规划等方面。我们以商品-销售额的组合来举例说明二八法则的具体分析步骤。
1、在Excel中,将各商品按销售额由大到小进行排列;
2、滚动计算商品销售额占总销售额的比重;
3、找到占总销售额80%左右的那个节点;
4、计算这个节点以上的商品占总商品数的比重,这就是20%那部分重点商品。
计算过程参考下图,79.2%的销售是由21.2%的商品销售出来的,左侧是过程,右侧是结果。需要注意的是,严丝合缝的20%对80%是不容易出现的,不要太机械了。

二八法则一般用如下图所示的双轴图来展示。

二八法则只能将对象分成两类,重要和不重要两类,所以他的升级版是ABC分析法。ABC可以将对象分成A、B、C三类,分析方法和二八法则的四个步骤一样,也是先排序,再找对应节点的方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22