
经典的二八法则和ABC分析法
数据分析方法不是讲究高端大气上档次,而是讲究实用,并且是结合业务背景的实用方法才是最好的。只要实用,即便是最简单的排行榜、二八法则分析也可能是非常好的分析方法。很多刚刚毕业学统计的同学,在刚开始工作的半年甚至一年内往往比较迷茫,其一是自己在大学中学到的那些分析方法在实际工作中往往用不到或用得很少?其二是他们总想挖出一个“啤酒与尿不湿”式的经典案例才叫数据分析。这说明说明大家不熟悉业务,不了解数据分析是以实用为最高准则的。
每次培训的时候我都会问学员两个问题:
1、你了解什么是二八法则吗?
2、你在实际的工作中使用过二八法则来做分析吗?
前前后后我问过好几百人,基本上100%的学员都了解二八法则,但是只有不到5%的学员在工作中曾经利用二八法则做过分析。二八法则是最简单、最广泛的一种分析方法,本应该广泛应用,但是大家把它当空气了。
二八法则可能是最简单、最有知名度的分析方法之一。大部分人都能随口说出几个自认为的二八法则数据。但是“20%的人用脖子以上挣钱,80%的人用脖子以下赚钱”,这不是严格意义上的二八法则,只能算二八比例。同样20%的人是富人,80%的人是穷人这也是二八比例,非二八法则。
二八法则是一种不平衡法则,即20%的对象产生80%的效果,20%是对象,80%是效果,前后不是一个范畴。这些才是真正的二八法则实例。
20%的客户贡献了80%的利润,20%的客户即为利润指标的重点客户;
20%的企业员工拿了公司80%的薪水,所以大家要做奋斗,期待早日成为管理层;
对女孩子来说,80%的时间只穿衣柜中20%的衣服,所以女孩子总感觉衣柜里面永远“少”一件衣服;
办公室中,80%的时间我们只是在20%的区域活动,所以这20%区域的地毯会更容易脏,也更容易破裂,有经验的物业人员会给这些地方单独铺一块地毯;
培训讨论的时候,80%的发言是由20%的人阐述的,有些人说起来就没完,而有些人却惜字如金。所以对一个有经验的培训师来说,他知道什么样的问题该提给什么样的学员。
二八法则的作用是找到对象中的重点因素,将对象分为重点和非重点两个部分。它让我们的管理更有重点,也更有效率,所以常常用在数据分析、销售管理、个人规划等方面。我们以商品-销售额的组合来举例说明二八法则的具体分析步骤。
1、在Excel中,将各商品按销售额由大到小进行排列;
2、滚动计算商品销售额占总销售额的比重;
3、找到占总销售额80%左右的那个节点;
4、计算这个节点以上的商品占总商品数的比重,这就是20%那部分重点商品。
计算过程参考下图,79.2%的销售是由21.2%的商品销售出来的,左侧是过程,右侧是结果。需要注意的是,严丝合缝的20%对80%是不容易出现的,不要太机械了。
二八法则一般用如下图所示的双轴图来展示。
二八法则只能将对象分成两类,重要和不重要两类,所以他的升级版是ABC分析法。ABC可以将对象分成A、B、C三类,分析方法和二八法则的四个步骤一样,也是先排序,再找对应节点的方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01