京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代新闻生产的新变分析
大数据时代,各类高速发展的技术思维改变了新闻生产的理念思路和生产流程。对此,本文通过分析数据新闻的各类特征,并从新闻生产理念、队伍结构以及报道方式三个方面来分别阐释大数据时代新闻生产的新变,以便新闻工作者能以全新的工作理念和方法适应大数据时代的挑战与需要。

大数据时代传统新闻的生产理念以及生产方式已然发生了深刻的变革,这是顺应时代发展的需要,也是新闻行业在前行过程中,不断自我修正、自我提升的必然结果。
一、数据新闻的特征分析
首先,“视图”结合的叙事方式。“数据新闻”采用全新的报道方式,颠覆了以往单纯以“文字”为中心展开叙事的基本模式。面对复杂多变的信息内容,图文不仅增加了新闻的可视性,也便于利用“受众对于新闻要点的记忆和理解程度”来展开新闻创作。
其次,开启“议程设置”,引发多样化报道。在面对某些重大新闻事件时,较之传统媒体“千篇一律”,数据新闻则可以为受众“设置议程”,主动引导关注度,对同一新闻主题以不同的或自己所独有的阐释角度进行“解码”式创作,找到更贴近于个人日常生活的报道角度。
最后,数据新闻的出现,迫使记者由“信息记录发布员”转变为“全能记者”。这种变化促使新闻记者通过提高对数据分析的能力来强化自身的“新闻敏锐度”,从而在面对互联网纷繁复杂的各类信息时,能够去粗取精,游刃有余。
二、大数据时代新闻生产的新变
(一)新闻生产理念的变化
“数据新闻”的出现颠覆了以往固有的新闻生产理念,深入挖掘和利用数据的价值、以数据为生产力成为大数据时代全新的指导思想和新闻生产理念。同时,可以预见的是这种生产理念上的变化,对以报纸为核心的传统纸媒行业亦会产生不可估量的影响,将在内容产出、深度报道、甚至是编辑排版等多方面,引发一场场更为深邃的变革,具体来说这一系列变化主要体现在以下三个方面:
首先,“数据新闻的出现”突破了传统媒体对新闻生产的“垄断”,改变新闻生产的格局。
其次,大数据可以通过关联事物预测事物的变化发展走向,推动媒体展开预测性评论或报道。
第三,推动个性与“定制”性新闻服务,转变以往读者单向受众的身份定位,促进客户与新闻媒体之间的良性互动,提升广大用户对新闻生产的关注与参与程度。
(二)新闻队伍结构的变化
较之传统媒体,大数据时代的新闻生产需要的是以高度信息处理能力和深度数据分析能力双向加持的全新报道方式。这种转变的大环境,对专业人才的需求也发生了结构上的变化。换言之,从此刻起,记者并非是单纯进行采访记录的一群人(或是一种职业),新闻主播也不再是单纯坐在演播室里进行“朗读”的职业种类。大数据时代让记者、主播、评论员之间的岗位定责出现交叉,也需要其各自适应新时代的发展趋势,扩充自己的专业能力、提升职业素质,将其培养成能够进行信息分析、数据挖掘以及计算机应用等多“功能”的复合型人才,以迎接数据时代对新闻生产的高度要求。
(三)新闻报道方式的变化
大数据时代的“数据新闻”同样激励以及刺激新闻报道方式发生变化。传统新闻报道要求准确、客观、时效性强,“数据新闻”在此基础之上,更强调信息内容的完整、深入,更具有说服力,同时要求视觉感官上的便捷可视。伴随着计算机应用以及人工智能化科技终端的不断普及,新闻报道的方式也逐渐呈现出多样化和形象化的趋势。较之传统媒体,大数据时代下的新闻报道依靠不断科学化的调整以及规范化的运作,在实际报道过程中不断创新方法,作用于实践,从而让新闻生产环节在各类信息迸发的数据资源之中,不断发现新规律、掌握新趋势和新动向,探索新方法,对未来新闻行业的发展产生突破性的意义。
三、结语
大数据时代的到来,使新闻生产从理念到生产方式都发生了全新的变化,这不仅为新闻媒体带来了全新的发展机遇,也带来了不可回避的挑战。我们应该清醒地认识到,大数据信息处理技术并非万能,也不可能实现对传统新闻生产的彻底替代。身为新闻工作者只有审时度势,吸收和借鉴大数据的优势加以利用,同时不断提升自身专业素质,强化计算机操作应用以及数据分析处理能力,才能适应高速发展的时代需要,致力于新闻产业未来更快、更好的发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26