京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当今社会,人人都谈论大数据,怎么能让数据分析,数据挖掘创造出价值。各个企业也都在这方面加强的投入,期待这些数据分析部门能够提供刚好的建议,帮助企业进一步的提高。同时,也有一些公司是专门做数据分析的,希望能够帮助产生数据的甲方分担数据分析的担子,挖掘出更多有价值的规律,帮助甲方不断改进业务水平、不断发现业务中存在的问题。从这个角度来讲,甲方公司与第三方数据服务公司的初衷是一致的。
那么到底在第三方公司做数据服务和甲方公司做数据服务有没有哪些不同呢?结合最近几年第三方公司到甲方公司做数据的经历,对二者做数据方面的差异进行了一个简单的总结。
1、追求不同
第三方公司与甲方公司关于数据服务的合作模式大致有这样几种:
1) 长期监测流量数据——定期提供日报、周报、月报;
2) 临时项目——接到甲方公司的需求,发起项目,在规定的项目周期内,以报告的形式总结项目研究成果。
无论哪种合作方式,第三方分析人员在分析的过程中,总是孤独的、总是更依赖数据的。因为不在所分析的环境之内,不知道运营最近在做什么,不知道产品有什么样的计划,一句话:不知道对方关注的点到底在哪里。
甲方公司内部做数据,其实合作方式也同上面列的两种差不多。只是细节配合上有所不同:
1) 研究前会详细了解项目的背景及产品或运营人员的困惑;
2) 研究中遇到数据上无法解释的问题,可以随时找到相关的人员反馈情况。和业务同事一起分析数据异常的原因。
3) 研究后会汇报整个研究成果、和业务同事讨论下一步的改进策略及方案、约定下一次的研究时间点。
所以说,受到条件所限,尽管初衷与甲方公司是一致的,但是由于无法深入接触业务,因此对于最终的目标只能停留在完成一份严谨、专业的数据分析报告上。至于后续,甲方公司如何使用这份报告,如何改进业务、是否改进业务等一系列后续的工作都不得而知。因此,第三方公司的成果产出总是不能在整个业务链条上形成一个闭环。
但是,这个也的确是无法避免的一个事情。相信目前大多数公司,尤其是中国公司,对公司内部数据的私密性还是比较看重,对于第三方公司的态度不会是完全开放的。因此,双方的配合也仅限于比较浅层的合作。第三方公司想要真正走完业务闭环,从现阶段来讲是完全不可能的。
久而久之,第三方的数据分析人员也就习惯了把制作一份精良的报告作为最终的目标。
附:过渡阶段真实感受
刚从第三方公司进入新浪微博做第一个项目的时候,项目汇报当天得到了产品人员的肯定。我当时非常高兴,感到工作得到了认可。以为产品同事都认可了,肯定领导也会觉得还不错吧。但是,结果却是完全相反的。组长同学对于我没有任何下一步结果追踪计划感到很不解,从我们严肃的谈话中我深切的体会到,在甲方公司数据真的是为产品改进或运营服务的。如果你的发现仅停留在问题的总结和整理上,那工作基本上只做了50分。相当于,医生只为病人拍了x光,之后就对病人置之不理了。
2.展现形式不同
对于第三方公司与甲方公司的合作方式,项目的价值就体现在报告上,因此报告的制作既要美观又要让人感到“物超所值”。只有几页的PPT是绝不能作为最后的产出成果的。如果能在研究时,通过建立某个复杂的模型,来辅助说明研究成果就会显得更有价值。
而在甲方公司内部,大家都迫切的想知道,看到这个研究成果我到底能做什么。如果这个模型复杂到产品人员都看不懂,或不知所措,那也是没有意义的。反而是针对某个具体问题的研究,哪怕只有几页纸,几个数据,也会令产品人员很兴奋。
比如,偶尔从数据上看到一些现象或问题,此时做一个简单的整理,打印出几页纸就可以去和产品、运营的同学去聊了。去看看业务一线的同事是如何看待这一现象的,是不是有一些重要的运营策略影响了某些数据结果,造成数据结果异常,而并非真正出现了问题。如果没有其他异常因素的影响依旧出现了这个现象,那么我们下面真的要立项去花时间找到问题的原因了。
3.成就感体现不同
第三方数据公司,核心业务就是对数据进行采集、分析,因此负责产出数据报告的数据分析人员,相比之下,工作成果很容易被大家看到。因此,也很受到公司的重视。
而在甲方公司,数据服务是一个职能线,是为产品和运营人员服务的。或许工作价值的体现只有在完整走完业务链条后才能够体现出来。即便走完整个业务链条,又如何评估数据在整个过程中的作用,也是一个艰难的工作。但是,作为一个数据分析人员,能够看到自己的分析,帮助产品或运营发现了问题,使产品体验或运营机制得到了改善,这种成就感还是会使分析人员振奋的,还是会兴致勃勃的冲向下一个项目。
4.对行业标准的把握不同
第三方数据公司由于服务行业内的多家公司,因此会将同行业公司的相同业务模块放在一起,出一个行业标准。 在不透露客户商业机密的情况下,为客户提供行业标准数据。使各家都可以清楚的了解其在行业中的地位,了解哪些数据表面上看起来很好看,但是与行业标准对比,其实情况并不乐观。我想,这也是第三方数据公司的最大价值所在。
但是,现状是,中国的互联网行业,大家对数据还是守得很紧,不愿意过多的让第三方介入。这造成的结果就是,大家都没有一个行业标准。数据结果的好坏就只能依靠经验了。
综上所述,这两种数据分析工作的差异,给我的体会是:数据分析重点不在数据,而在于如何能够真正的解决实际的问题。数据分析师的终极价值不是会使用多少种统计工具,能挖掘出多少个数据模型,而是真正的懂业务。看到数据结果能够知道哪些业务出现了问题,而看到业务问题又可以清楚的知道通过分析哪些数据能够获知问题的原因。当然,如果从大的方面来讲,各公司都能够愿意与第三方公司合作,通过第三方公司把行业标准建立起来,那将会使数据最终发挥更大的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29