京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前段时间我和数据分析爱好者一起探讨,在数据分析工作中遇到的很多相似问题,经过3个小时的激烈讨论,我和我的数据分析小伙伴们得出的结论和大家分享下,大家一致认为这3个因素是最只要的。

首先,大环境不尊重数据,尤其是老板的态度。如果数据分析师只要随便给一个报告就行,数字多一点和少一点,大家也是一笑而过,并不会追根到底,那么很难让数据分析师以严谨的态度对待数据。
例如,国内这几家数据分析机构,基本都在着急扩张行业,争着占领行业,对于其推出的数据有多精准却不那么在意,所以艾瑞的数据最近才会经常被人说“不靠谱”。
数据分析,今天做得不准,明天再改是没有用的。比如艾瑞,如果数据不稳固,抢着做很多行业,这是不靠谱的做法,指不定哪天砸了自己的牌子。
有人和我提过FACEBOOK数据分析师为什么那么牛,因为他们不觉得数据分析是一个苦事,十几个人在一个房子里把数据分析当做一件很开心的事情来做,数据分析对于他们来说是在追求科学。
第二,好的数据分析师需要一点天分,同时也需要高人点拨,但是电子商务这个圈子,真正懂数据分析的人不会超过10个,所以一般人很难取得真经。这和信仰一样,没有师傅领进门,难度也会大很多。
我回顾自己从微软到易趣,再从敦煌到支付宝,在数据分析上有一次长足的进步,得益于从两位老师的身上得到了许多启发。一位是亚马逊的首席科学家韦思 康,曾经,我告诉韦思康,KPI报告显示敦煌网需要4秒钟,他立马让我叫来做技术的同事(他要听到一线同学的反应),问这个4秒钟怎么测算出来,是美国人 打开用4秒钟,还是英国人打开用4秒钟,用的是甚么Browser等等。这个4秒钟和商业价值(例如交易量)有关系吗?我当时很触动,连这么一个很基础的 数据,他都是以求证的心态来分析的。更令我印象深刻的是,只请他当敦煌网顾问半天,按照他的工作经历来说,随便忽悠我半天是很容易的事情,但是韦思康非常 严谨,先是以一个普通人的身份花了半个小时在敦煌网买东西(坚决要真实付钱),切身体会敦煌网的用户体验,然后也不先看数据,而是先问很多能更了解敦煌网 的生意形态的问题。讲真他的问题比很多投资分析师来得专业。而现在许多数据分析师,包括当时我自己,只看数据就开口说问题,不深入去体会公司的商业形态。
韦思康告诉我数据是一种态度,让我明白做数据的人就是要全身心投入,好像一种信仰一样,中间有许多路要走;而且,数据与商业密切相关,不能局限在数据的死角里。
另一位是清华大学的教授谢劲红,有一个夏天碰巧去旁听他的课,拿一堆的数据给他看,他一边看一边给我演绎他的思维,他可以很快在一堆数据找到他们之 间的关系。后来我带着团队常常去清华找他聊,他教我如何看网络数据,用联动的思维来看网络数据。可以说是他启蒙了我用 “关系”的思维看数据。一听完就回到敦煌跑到敦煌看很多数据,发现了新世界。
第三,数据分析师感叹落不了地,只能谈数据,而不懂商业。如果不懂商业,而单纯看数据,不仅很难有创意的思维,而且是没有意义的
而对于一般的数据分析师来说,大部分人没有系统思维,而且也只能看一部分数据,无法从大面儿上了解整个公司的运营数据,这样就令数据分析师难以形成全面的思考方式。
以我自己的工作经历来举例,为什么我在敦煌的时候数据分析能力会突飞猛进,也是因为我在前两家公司只能看到一部分数据,而到了敦煌之后我爱看什么就 看什么,受谢教授启发之后我更是天马行空地把营销数据、市场数据、财务数据、产品数据、卖家和买家数据等等联动起来看,这大大改变了我对数据的运用方式。
经过这些年的努力工作经验的累加和受到知名是数据科学家的点拨,是我的数据分析技术认识更家深刻,也是我技术上升了几个阶段。这也改变了我对大数据的初步看法,非常感谢帮助我人。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22