
建模是数据分析师工作中最重要的环节之一,预测建模也是最常见使用的,那么,预测建模对数据有哪些哪些要求呢,是重视大数据还是小数据呢,
很多数据分析专家都对大数据抱有很大的希望。但是在预测分析世界大会上,演讲者讲到预测分析模型,对大数据并不是很乐观。
StatSoft的高级数据分析师兼数据挖掘顾问Gary Miner表示:“大数据对我来说只是一个炒得很热的概念,并没有什么新鲜的。”
Miner认为,对于大数据究竟是什么,仍存在争议。广为流传的是IBM提出的三个V,即规模大、速度快和种类多。但是,要想用一个精确地量来定义“大”数据,这本身就是不精确的。有人说几TB,有人说几百TB。
Miner的感受是,对大数据,人们言过其实了。相反,分析小规模数据集倒来的更实际。他举了一些医学实验如何通过不足100的病例取得研究成果的例子。因为更小、更精良的数据集更容易过滤“噪声”,获得“信号”。
存储空间的成本正在降低,这让分析界倾向于分析全部数据集。不过Miner 认为通过随机样本,你会更快速地获得更好的结果。
“如果你想从数据中挖掘因果关系,你最好分析小数据集。”
旅游社区TripAdvisor商业部门的分析总监Michael Berry表示,在大数据时代,人们希望通过部署一个技术,就可以解决多种问题。供应商们正在积极迎合这种需求,声称自己的大数据软件可以极大地简化业务 分析项目。但Berry认为,这种简单便捷的解决方案基本上只是一种幻想。
“这只是一种营销策略,从来没有实现过。”
Berry建议,与其坐等大数据软件来解决一切问题,不如去提升自己的预测模型。定义预测模型的变量要比放入模型中的大规模数据有用的多。
Berry认为,在模型中加入更多的数据反而会增加分析的时间。在分析数据集的时候,样本足以揭示总量的规律,而且更快捷。如果分析了100个数据节点之后,样本已经显而易见了,就不需要继续分析剩下的十万个数据节点了。这样只会延长项目,降低收益。
并不是每一个人都这样看衰大数据。广告代理商Carmichael Lynch的数据分析战略家Peter Amstutz认为,在创建预测模型的时候,尽可能多的收集数据变量是很重要的。有时,可以通过一个标准记录的数据源积累信息变量,但很多时候,组织会得 到大量的非结构化数据。这时,大数据就派上用场了。
Amstutz最近帮助Subaru部署了一个提升建模项目,汽车制造商可以通过它更精确地锁定目标客户。Amstutz表示,他一直在寻找包含客户信息的新的数据源,以便于建立目标客户的个人档案。参照这些变量,广告商就可以更精确地找到目标客户。
数据分析供应商ForeSee移动、媒体和娱乐的高级总监Eric Feinberg认为,最重要的是数据的质量,而不是规模。大数据只有在标准和精确的条件下才有用。
他强调,不同行业应用大数据分析有所不同。在研究销售趋势的时候,明显的峰值只会增加噪点,让人难以判断真实的趋势。而在欺诈检测中,峰值正是分析人员要分析的。所以使用少量样本的时候,销售预测效果较好,但要进行欺诈检测,就得依靠大数据了。
另一方面,更传统的方法或许效果更佳。Feinberg举了医疗器械公司想要完善心脏病客户个人档案的例子。医疗器械公司可以通过收集大数据找到相似客户的共同点,或者花钱找几个心脏病患者过来。
“两者是一样的。甚至后者更难,因为它要花费更多的时间,但结果是一个成熟的数据集。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13