京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Ted Yu目前是Hortonworks高级技术成员,也是一名Apache HBase Committer,拥有15年以上的软件开发经验,以及超过三年的HBase开发经验。2011年他成为HBase代码提交者和PMC的成员,Apache项目按照贡献度“论资排辈”,只有作出足够的核心贡献才能进入PMC,且HBase代码提交者至今仍不足40人。
在2014年12月12-14日北京召开的2014中国大数据技术大会(暨第二届CCF大数据学术会议)上,Ted Yu将与大家一起探讨HBase的未来发展和面临的挑战。
Hortonworks高级技术成员和公司的HBase的核心贡献者Ted Yu
Ted Yu出生在一个计算机科学氛围浓重的家庭,父母都是计算技术方面的工程师,这使得他从小就受到了计算机科学氛围的熏陶,后来进入了清华大学大学,所学的专业为计算机技术及科学。
他之所选择Hadoop/HBase成为自己的研究方向,主要是因为Ted Yu曾在之前供职的公司CarrierIQ做过工程师,CarrierIQ很早就支持了Hadoop,而CarrierIQ平台正是使用了HBase。在实际的使用,Ted发现了大量的问题,作为一个开发者和自身严谨的态度的他将这些问题进行提交,久而久之成为了这个领域的专家。同时他当时就敏锐的判断出这是一个新的趋势,因为Hadoop可以真正实现云计算,在未来的大有前途。
团队协作是取得成功的重要因素
总结了多年的开发生涯,Ted Yu认为团队协作是取得成功的重要因素,因为大部分情况下遇到的困难都不是技术性的,只要团队的目标一致,观点的差异总是可以解决的。他这样解释:
在团队中,每个成员发挥着自己的优势,技术性的阻碍并不是最大的困难,团队的目标一致总能使成员在多方面贡献着自己的力量,进而实现团队的目标。包括他曾经所在eBay的Hadoop构架团队和后来的Apache HBase项目组,他都在团队中作出了大量的贡献,相比较收入而言,他更关注于社区问题的解决。
执着于开源的Ted Yu
Ted Yu一直活跃在国内外的各类大数据相关的会议上,一方面是分享HBase最新的技术发展和趋势,以及HBase的机遇及发展空间,另外他也在积极的推动开源这件事,他曾讲过这样的一句话:“任何封闭式解决方案都因来自其他参与者的激烈竞争而有被淘汰的风险。”
对于开源,Ted Yu认为参与开源比收入更重要,此前他曾在采访中表示,“帮助解决社区上的问题比提高当前的收入更重要。”
关于开源的需求,Ted Yu也有自己的看法。他认为从Linux被建立为企业集群(后来的云计算平台)事实上的操作系统的年代开始,软件开发已经历了巨大的变化。无论单个公司内部团队的规模有多大,它的资源都无法与开源社区的资源相提并论。其中的原因是:
服务于多种社区需求的解决方案将更加通用,社区在技术上的集体智慧优于内部人才。开发人员,特别是那些刚接触开源运动的人,应该更为积极地查看代码审查过程的反馈。很多时候,其他开发人员,尤其专注于特定领域的开发人员,可以更迅速地发现设计缺陷或者大家都忽略的问题。我们应该将开源过程视为将解决方案提升到一个更高水平的过程。
HBase作为Hadoop下的一个子项目,目前发展比较强大,是很值得大家关注的点,Ted Yu继续将在今年的2014中国大数据技术大会上和大家沟通交流HBase的未来发展和面临的挑战,敬请关注。与此同时,在这里也分享他在去年中国大数据技术大会上关于HBase和HOYA主题的演讲PPT。
本文: CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22