
Trifacta是一种提供数据分析服务的平台,最近获得了风险投资以推动其能使数据分析师更容易地做数据整理的工作。它的目标是能够比目前更快、更容易地收集、清理和转换数据。
数据整理(Data wrangling)一直是每个大数据项目中最耗费时间和最令人痛苦的部分。在我们这个时代,数据是流动的、异构的,作为数据源其属性会不断变化。 NoSQL数据库一直都尝试解答在存储方面是使用基于列式存储还是基于文档型存储,但问题依然是如何收集数据和应用其语义。
Trifacta以用户为中心的角度而不是以程序员的角度去解决问题。业务分析师和数据科学家将能使用可视化的方式去清洗数据集。基于伯克利分校和斯坦福大学的研究,该平台的目的是使员工和机器一起合作,以从数据集中提取数据。
使用可视化的方式我们可以从大数据集中自动化采样数据,这让分析师可以在很短的时间发现有趣的模式。Trifacta可以应用机器学习算法为重新组织信息和整理提供建议。大数据分析师可以将数据集分组为信息的逻辑部分,每次将其规范化,并在其工作过程中以友好的界面方式显示。归纳概括整个数据集合是最后一个步骤,这将最终形成半结构化的数据集并最终成形。该平台是在底层设计时考虑到用户的体验,让数据分析师能专注于数据的处理,而无需开发复杂的管道去清理数据和把它们放入数据仓库。
Trifacta的项目前身DataWrangler 和相关研究文章都可以在线获取并可以从中了解Trifacta是如何实现的,因为它们目前依然处于封闭的beta测试阶段,所以只能通过预约邀请的方式进行演示。
Trifacta Seeks to Simplify Data Wrangling-as-a-Service
Trifacta, a data analysis services platform, recently received VC investment to advance on their efforts of making data wrangling easier for data analysts. The goal is to collect, cleanse and munge data in a fraction of the time and effort it currently takes.
Data wrangling has traditionally been the most time consuming and painful part of every Big Data project. In our era, data is flowing, heterogeneous and constantly changing attributes as data sources are evolving. NoSQL databases have long tried to answer this question in the storage side by being column based or document based but the problem still remains in getting the data collected and applying semantics to it.
Trifacta is approaching the problem from a user centric perspective, instead of a developer one. Business analysts and data scientists will be able to cleanse datasets in a visual oriented way. Based on research at Berkeley and Stanford, the platform aims to make employees and machines collaborate together in extracting insights from datasets.
Automated smart sampling from big data sets together with visualization allows for the analyst to discover interesting patterns at a fraction of the time. Trifacta can then apply machine learning algorithms to suggest ways to reorganize information and get it into shape. The analyst can group the dataset into logical parts of information, normalizing it one step at a time and viewing the outcome in a user friendly way along its course of work. Generalizing in the whole dataset is the last step which turns the semi-structured dataset into shape. The platform is designed from ground up with user experience in mind to allow data analysts to shift in depth through data, without the need to develop complex pipelines to cleanse the data and bring them into the Data Warehouse.
Trifacta’s predecessor research project, DataWrangler and the research paper are available online and can give a sneak preview of what Trifacta is getting to, since they are still in a closed beta, only scheduling demos by invitation.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07