京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师分析结果什么最主要呢?在这些方面很多数据分析师人员都存着一个误区, 都认为答案是最会主要的,其实不是,经过跟多名数据分析专业沟通,得知一个真理,方法是最主要的,答案是参考性价值比较高。
我在面试数据分析师的时候,必然会问他们一个问题: “假如我是一家知名电商的CEO,而今天是星期一早上9 点钟,请你给我提供三个数据指标向我证明在过去的一周里,企业运营得一
我在面试数据分析师的时候,必然会问他们一个问题:“假如我是一家知名电商的CEO,而今天是星期一早上9 点钟,请你给我提供三个数据指标向我证明在过去的一周里,企业运营得一切正常,可以让我踏实下来。你认为,会是哪三个指标呢?”
绝大多数应聘者对这个问题的回答比较一致:第一个是流量;第二个是交易量;第三个是其他,这个其他包括转化率、交易额等。
当他们这样回答完后,我会反问他们:“刚刚我问的问题,你真的听清楚了吗?”这时候,有人会回答:“我听清楚了,答案就是这三个数据。”往往这个时 候,我会提醒应聘者说:“请注意,我要的数据是给CEO看的,而且还是顶级电商的CEO,而且时间轴还是周敏感数据。”面试进行到这一环节,我发现大部分 面试者根本听不懂“CEO”的含义。事实上,既然是CEO,就意味着他是公司里的最高领导层,那么给他看的东西明显要与其他人不同。在这个例子中,我们会 发现绝大多数应聘者很少会换位思考。也就是说,事实上,他们都是从自己的角度来思考,而不是以一个数据分析师、一个要给CEO汇报三个数据指标的分析师的身份来思考问题。
那么,什么是以数据分析师的身份来思考问题呢?通常来说,在我问出问题时,作为数据分析师的你首先要想的是CEO 会关注什么数据,是长期的,还是短期的?是风险最大的,还是风险一般的?或者是最近发生了什么事情?以及给CEO 提供的数据要有什么注意事项,等等。
所以,我要再问问应聘者:“当你坐在面试桌对面给我答案的时候,有没有想过在星期一的早上,这家知名电商的CEO 真正想看的是什么?”再想想这个问题,你到底有没有真正听清楚“CEO”、“知名电商”、“周敏感数据”这些关键词?
CEO 要的是“踏实”——他听完了就可以安心地吃早饭了。
在面试时,如果面试者不对这几个问题进行询问就贸然回答的话,满分是10分,我只会给5 分。因为这个问题里面本身就有很多问题,比如,什么是踏实?踏实是一个概念,你不问清楚“踏实”的含义,就给我三个指标,无论如何都是错的。
在正常情况下,首先不要急于回答我提出的问题,而是先问清楚什么是踏实,切勿自己先做假定。以下,我们可以假定一个相对理想的面试场景。
你反问:“什么是踏实的状况?”
我回答道:“最近这家电商和另一家电商在打价格战,而它最近又新推出了图书类目,那么CEO 自然最关注的是这些图书的业务做得好不好。”
你再问:“什么是好?是否基于每天来买书的新增用户和原有用户购书的数量多少?而且,CEO 是希望更多地用书来吸引新用户,还是想通过图书业务的推广让现有的用户进行交叉购买行为?”
在这些思考结束之前,你绝对不能给出指标。因为,在没有解决一个问题的内涵之前,任意给出的一个指标,必错无疑。所以,我才会问应聘者到底听清楚问题没有。
在我做面试官的经历中,很多看似有经验的数据分析师,往往在我提出的问题还没有解释清楚时就抢着作答。绝大多数人在思考不到一秒钟的时间里就给出了答案,而这一秒钟的答案,我可以确定他们根本没有听清楚我的问题。
通常这个时候,我会再给他们一次机会,问他们:“刚才你给我的这个答案,如果我给你满分10 分,你会给自己打几分?”而此时,大部分人只会打6~7 分。
当应聘者给自己打7 分时,我会反问:“另外3 分丢的原因是什么?”他开始反思,说自己刚才给的可能并不是CEO 想要的指标,因为他对这家电商的近况不是很了解……
接下来,当我再反问:“刚才我的问题是‘假如我是一家知名电商的CEO,
今天是星期一早上9 点钟,你给我三个数据指标向我证明在过去的一周里,企业运营得一切正常’,你听清楚了吗?如果你确认自己清楚了,能请你再给我一次答案吗?”
这时候,聪明的人不会再用一秒钟就给我答案了,而是重新思考,开始问问题,再给出答案。这时候的答案,当然会比第一个答案要好得多。最后,当我再问他:“现在,10 分满分你给自己打多少分?”此时,他们自己给出的分值通常都会高一些。至此,我的面试也就结束了。
事实上,关于这个问题,我根本就不关注打分的结果。当然,如果评价是10分,那就不用面试了,因为在没有仔细考虑过答案的时候就自信满满地回答,这 种人必然无法承担做数据分析师的责任。虽然,自信是对的,但是思考更重要。作为一名数据分析师如果你不把自己的分析与当下结合,是没法进步的。
有趣的是,当我把这个问题贴在网上时,还是会有很多人追问我答案是什么。CEO 关心的到底是哪三个数据。这时候,我真的很想说,数据分析师------答案不重要,方法才是最重要的。(文章来源:网络)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01