
大数据时代:企业必须掌握这6步
大数据时代,企业越来越重视客户的行为习惯。但是,很多企业并不了解大数据对行业带来的冲击。直到现在,仍有很多是在浪费这些宝贵的数据。
当你正准备最大程度经营大数据的时候,往往只是包括收集大量的数据,然后寻找其模式和对其进行分析,这些是由廉价的存储、丰富的传感器和新的软件所导致的。请记住大数据的种种细节中可能存在你正忽视的威胁因素。掌握以下这六点,企业在运用大数据时,将会更加得心应手。
确保数据安全
许多公司都在收集和储存大量用户数据,而其中明显的隐患是巨大的数据安全漏洞,这已经困扰了像Target、家得宝(The Home Depot)和摩根大通(J.P.Morgan Chase)这类大公司。在过去几年时间里,数百家公司也同样遭遇过类似数据漏洞事件。大都由于企业数据库侵入者无孔不入,使数据库维护人员防不胜防。
解决方案:做好大数据安全需要提高基础设备质量和安保人员素质,这也迅速成为每个企业最重要的资产:用户数据。
不要被大数据淹没
大数据不仅仅是更多的信息,它更指来自四面八方成倍增长的巨量信息。因此,许多有用数据很可能淹没在如此大规模数据中,从而导致相关数据研究人员浪费许多时 间、精力和资源在一些无关数据上。未来面临的挑战是如何从大量数据中提取你所需要的有用数据。数据过多同数据量不足一样,都是无用或将成为无用信息,这是 大多数公司必须引以为戒的。
解决方案:尽可能确定所有有用的数据。数据本身变得更加精细,所以筛选数据的过程也相应的需要更加细心。缩小焦点并定义参数。例如,当用户要在两个品牌中做选择时,企业是否能够与客户实时沟通,这时要和用户说些什么,以及怎么说?
切忌聪明反被聪明误
即使对于一些有想法的人来说,加入与最老牌企业的挑战也并非易事。运用大数据的企业在竞争格局中已独树一帜,新加入者都会遭受竞争威胁。
解决方案:无论企业规模多大,都需要一个系统来运营。企业应该花更多精力在市场调研上,对于如果快速的市场变化,企业间的竞争随时发生,无处不在,造成很大伤害。
有的放矢
除了大数据的消费者方面因素外,未来几年企业将处理更多的内部生成数据。然而,在许多企业里,财务、开发、生产、市场和IT等各部门间的信息依旧是独立的, 这阻碍了部门间共享有价值的信息。能够找到一个如何使部门间更透明沟通而不破坏各部门实际利益的企业,将在竞争中获得明显优势。
解决方案:数据管理对每个人来说都是一个挑战,但是挑战的很大一部分在于找到能够满足企业需求的有经验有培训价值的人才。高级数据管理人员的教育和培训成本非常高昂,尽管这部分目前看来是一种不必要的企业支出,但依旧会是不可避免的一部分。
合理运用大数据
随着企业的发展,数据独立的壁垒已被打破。数据分析成为一个日益重要的工作内容,必然会有一段时间数据表明会有一个很大变化。互联网背景下,用户的每一次行为都将被记录成为大数据库中的一个因素,及时高效地分析利用,形成预判和商务决策。传统企业必然要嫁接互联网企业的DNA,否则将沦为互联网企业的附庸。大数据需要全部数据样本,而不是抽样样本,它关注效率而不是精准,关注相关性,而不是因果关系。大数据价值不在大,而在于基于情景化前端的数据分析能力。
解决方案:倾听大数据,运用大数据。大数据思维的核心不在大,而是理解数据的价值,通过数据处理创造商业价值。有了大数据思维,传统企业也可以借助大数据来确定营销方向和策略。
及时解决用户的不满情绪
与用户维持紧密联系很可能会使用户生气或不满。近期,关于用户不满的消息层出不穷,他们也更愿意拥有这种权利,而这种效应是一触即发的。
解决方案:同其它解决方案一样,快速的回应是是用户服务的关键,有了正确及时的回应,每个心怀不满的用户都会被转变成有竞争力的品牌推广者。所幸的是,用户在发泄不满情绪的同时,公司也能随机发现并解决存在的问题。反应越及时,就越能促就共赢局势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25