
未来两年大数据市场和技术趋势分析
我们在大数据的调研中了解到,中国各型企业正在逐步意识到大数据的业务价值和商业价值,并且鉴于数据量的迅猛增长和数据分析师通过大数据分析所带来的巨大价值,在未来24个月内,不论是企业级(78.1%)还是中小企业用户(71.8%),都将会在大数据分析上进行投入,通过部署新的数据分析方案来提高大数据创造价值的效率。这其中,考虑未来12-24个月在新的数据分析方案上进行投入的中小企业用户比例甚至高于企业级用户,鉴于中小企业在中国市场的庞大数量,可以想见这将对大数据分析形成一股极大的推动力。
大数据分析的演进过程
我们再从大数据分析的不同阶段来看,大数据是一个演进过程。传统商业智能通过增加数据类型和数据来源、提高分析速度,应对越来越多的数据子集,逐步演进为大数据数据分析。大数据通过IT创造价值的两个主要维度是数据分析频率、数据来源和种类,主要分为三个阶段。
大数据分析三个阶段
第一阶段:批量分析:数据主要以来自企业内部结构化数据(如生产、管理数等据)为主。目的是通过数据分析降低生产开支,提高资金周转和物流效率,提高业务智能决策能力。这一阶段用户主要IT投资重点是如何提高数据分析频率,以及增加大数据分析数据种类,为逐步向大数据分析架构演进做好IT架构和资源,大数据分析流程准备。
第二阶段:近实时分析:数据分析类型从传统的结构化数据逐步演进为结构化,非结构化(音视频、社群等)和半结构化数据(包括系统日志、客户信息)。除了降低生产开支,提高决策效率的同时,通过大数据分析提升利润和销售增长,以及提升优质客源获取和持有效率成为主要目的。数据分析子集数量相对批量分析更大。近实时分析对从分析准备、处理到呈现的时效性更强,提高了对数据处理能力和分析速度的要求。
第三阶段:实时分析:数据来源和种类更加丰富,不仅限于企业内部的生产数据、用户数据和社群网站,还会纳入来自于第三方数据(竞争实时监控,目标用户群体采购行为监控等)。主要目的是可以通过实时分析,通过前瞻性,实现业务突破创新。通过系统驱动实时“行动”,提升企业在全球市场核心竞争力,优化企业优质资源持有率。此外,实时分析对于数据分析和根据分析结构触发动态业务决策(价格、库存、打包服务)速度要求更为苛刻。不仅给计算、网络提出更高要求,也大大提高了对数据存储容量、性能和动态资源配置能力要求。
不同规模企业的数据分析投入重点
再从大数据分析环节来看,整个分析过程从数据采集管理,到数据分析呈现主要包括以下四大环节:
数据采集管理:将企业内部数据有效采集管理。逐步形成从数据采集阶段的数据分类管理规范化和标准化。
ETL:大数据分析的准备工作,从不同的应用实现数据的抽取、清理、转换、加载。
分析:根据业务需求进行批量,近实时或实时分析。
呈现:将大数据的分析结果呈现,以支撑智能的战略决策和业务决策,或者自动化根据实时数据分析触发商业行为,加大业务对市场的反应效率和利润的捕捉能力。
那么就上述4个环节,不同规模的企业侧重点又将如何呢?中桥的调研结果显示,未来12个月,企业级用户的大数据相关IT投入重点放在数据分析ETL(抽取,迁移,加载)和商业智能(BI),占比均为50%;中小企业的IT投入重点则在数据仓库(50.5%)和ETL(抽取,迁移,加载)(41.6%)。这也与不同企业所处的数据分析阶段有关。
具体来说,企业级用户正从大数据分析第一阶段,向第二阶段演进,更侧重于如何通过大数据分析和商业智能(BI)最大限度地提高用户使用体验,降低优质客户流失。中小企业侧重于如何通过商业智能提高生产效率,利润和发展空间;如何通过对用户采购行为分析,判断潜在业务发展空间,通过业务创新,实现以“小”搏“大”、以“速度”搏“规模”的目的。
中国市场大数据分析集中在如何完善商业智能效率
此外,中桥还对中国市场大数据分析的IT投入进行了调研,结果显示,未来24个月,企业的IT投入大多数都将围绕数据的商业智能(BI)展开。未来12个月,31.4%的受访者选择整合不同业务数据,实现商业智能这一方面进行IT投入,还有30.1%的受访者选择在提高结构化数据(如数据库)商业智能效率上进行最重要的IT投入。未来12-24个月,选择整合数据以实现商业智能的比例为22.9%;选择提高结构化数据(如数据库)商业智能效率的比例为22.4%。这表明数据的商业智能和商业效率是大数据时代企业的焦点,也直接影响到企业的业务发展和数据的价值挖掘。
大数据分析对企业的IT资源也存在一定的需求,包括分析方式、计算节点、存储技术、IT架构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04