京公网安备 11010802034615号
经营许可证编号:京B2-20210330
下一代的社交,移动手机,分析和云端技术已经引起了一场对那些能够持续快速革新的开发者争夺战。想要在明天仍然有立足之地的公司就必须在今天做出明智的选择。
三月份,我讨论了2014年的IDC预测。这项预测是基于IDC对于第三方平台的定义,是云计算,移动终端和APP、社交媒介及大数据的一个集合。
相比于一些分析者晦涩难懂和概念模糊的预测,IDC的这项第三方平台的预测确实表达鲜明并且严格的。它描绘了在动荡的IT世界中,现有权威的威胁和那些正在出现的新生力量。这项预测可以认为是吹响了改革的号角——却是对那些没能成功进入第三方平台的人的遗憾宣判。
数据整合常常被低估,也很难完美实现,这些都需要时间和资源。随后的几个月,我没看到什么能够让我对这项预测的判断,它依然是对即将发生的前所未有的变化的精确描述。
在三月份的文章中有一项特殊的预测我没有陈述,就是IDC陈述了,在一些云供应商和云技术的市场上,我们会目击异常短暂的开发者战争。IDC说,在建立自己的统治市场中,云供应商会尽其所能的最大程序的吸引开发者,因为这将不避免的预示着战争中的胜利。
大多数商家还没有意识到开发者的重要性(尽管Red Hat的CEO已经明显提到了这一点)。在今年的VMworld大会上,例如,似乎大多时候都聚焦在基础设施上,而开发者只是放在之后而已。就像重要的决策是在厨房里,而进餐者更多的只是被动的接受厨师提供的食物。
我不能说这是什么大的错误。Stephen O’Grady,是一个小的但是很有影响力的行业分析公司中的首席分析师,在他的《The New Kingmakers》中描述了将要发生的事情。他的观点:开发正在变得越来越有影响力——并且,实际上,在APP设计和架构阶段,开发者直接与APP打交道,这也是IT生存的价值。
IDC的报导这样描述:
“开发者,开发者,开发者,开发者!”将会成为2014年第三平台竞争者的最有力口头禅——在下一个二十年,行业最大的赢家将会是那些在未来两年抓住改革者的心和思想的人。错过开发者,就是丢失市场。
IDC继续说:
在2014年和2015年,我们将看到一场云端的开发者大战,像Android,iOS和WP手机APP和开发者之间一样。Amazon,Microprosoft,Salesforce.com,Google,Oracle,SAP,Pivotal,HP和其它一些知道云端APP将引发未来的产业增长,他们需要开发者将他们的创意实现成新的APP,在平台即服务/电子市集上实现自己的方案。
并且IDC也详细阐述:
在2014年,这场开发者之战会是紧急的:IDC预测到2017年,80%或者更多的新的云端方案(和开发者)将会进入竞争平台的前六。
最后,IDC的总结如下:
新的App——产生的数据及相关的APP——将会在下一个十年和更远的时间里,激发第三平台的增长。IDC预测,在未来四年,我们会看到,在云App生态系统中,开发者/贡献者的数量有三倍的增长,而这会驱动云端App的数量十倍的增长。
吸引开发者时,少一些福利,多一些体系改变。
开发者主导的IT世界的显示让我想起了最近的一次和两个公司的讨论。这两家公司都是在传统软件行业的大公司。尽管如此,他们也重构了IT架构和实现app的方法来加速App的迭代速度——因为,尽管是大公司,也看到了改革正在他们的核心市场中建立新的解决方案,意识到自己需要去起身迎战。仅仅希望客户由于习惯和品牌来做生意,从长远来看就是一种失败。
这两家公司有三个共同点:
现在,根据你自己的观察,你或许会发现这些绝无夸张之意。当然,获取在最近的VMworld大会上,你已经发现了一些对此的支持者;在那里,与会者的口号就是“不断变化”。
然而,保持这种态度也越来越难。VMworld搁置公有云计算的的防御性措施也表明与会者在他们的同事和客户中看到了对此的巨大热情。基础设施组也担心未来的世界——如果未来是走向破坏性的创新而不是在逐步改善又该怎么办。
为了解决这种麻烦,下面是每个公司要在开发者大战中生存的一个方法列表。
有时,会认为IT界的快速更新是如此不公平。昨天你努力去适应的需求,今天却被“下一个闪闪发光的东西”取代。但事实就是我们处在一个IT变化比我们看到的要多得多的时代——只有那些找到如何适应这场开发者之战的人才能够幸存。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22