
下一代的社交,移动手机,分析和云端技术已经引起了一场对那些能够持续快速革新的开发者争夺战。想要在明天仍然有立足之地的公司就必须在今天做出明智的选择。
三月份,我讨论了2014年的IDC预测。这项预测是基于IDC对于第三方平台的定义,是云计算,移动终端和APP、社交媒介及大数据的一个集合。
相比于一些分析者晦涩难懂和概念模糊的预测,IDC的这项第三方平台的预测确实表达鲜明并且严格的。它描绘了在动荡的IT世界中,现有权威的威胁和那些正在出现的新生力量。这项预测可以认为是吹响了改革的号角——却是对那些没能成功进入第三方平台的人的遗憾宣判。
数据整合常常被低估,也很难完美实现,这些都需要时间和资源。随后的几个月,我没看到什么能够让我对这项预测的判断,它依然是对即将发生的前所未有的变化的精确描述。
在三月份的文章中有一项特殊的预测我没有陈述,就是IDC陈述了,在一些云供应商和云技术的市场上,我们会目击异常短暂的开发者战争。IDC说,在建立自己的统治市场中,云供应商会尽其所能的最大程序的吸引开发者,因为这将不避免的预示着战争中的胜利。
大多数商家还没有意识到开发者的重要性(尽管Red Hat的CEO已经明显提到了这一点)。在今年的VMworld大会上,例如,似乎大多时候都聚焦在基础设施上,而开发者只是放在之后而已。就像重要的决策是在厨房里,而进餐者更多的只是被动的接受厨师提供的食物。
我不能说这是什么大的错误。Stephen O’Grady,是一个小的但是很有影响力的行业分析公司中的首席分析师,在他的《The New Kingmakers》中描述了将要发生的事情。他的观点:开发正在变得越来越有影响力——并且,实际上,在APP设计和架构阶段,开发者直接与APP打交道,这也是IT生存的价值。
IDC的报导这样描述:
“开发者,开发者,开发者,开发者!”将会成为2014年第三平台竞争者的最有力口头禅——在下一个二十年,行业最大的赢家将会是那些在未来两年抓住改革者的心和思想的人。错过开发者,就是丢失市场。
IDC继续说:
在2014年和2015年,我们将看到一场云端的开发者大战,像Android,iOS和WP手机APP和开发者之间一样。Amazon,Microprosoft,Salesforce.com,Google,Oracle,SAP,Pivotal,HP和其它一些知道云端APP将引发未来的产业增长,他们需要开发者将他们的创意实现成新的APP,在平台即服务/电子市集上实现自己的方案。
并且IDC也详细阐述:
在2014年,这场开发者之战会是紧急的:IDC预测到2017年,80%或者更多的新的云端方案(和开发者)将会进入竞争平台的前六。
最后,IDC的总结如下:
新的App——产生的数据及相关的APP——将会在下一个十年和更远的时间里,激发第三平台的增长。IDC预测,在未来四年,我们会看到,在云App生态系统中,开发者/贡献者的数量有三倍的增长,而这会驱动云端App的数量十倍的增长。
吸引开发者时,少一些福利,多一些体系改变。
开发者主导的IT世界的显示让我想起了最近的一次和两个公司的讨论。这两家公司都是在传统软件行业的大公司。尽管如此,他们也重构了IT架构和实现app的方法来加速App的迭代速度——因为,尽管是大公司,也看到了改革正在他们的核心市场中建立新的解决方案,意识到自己需要去起身迎战。仅仅希望客户由于习惯和品牌来做生意,从长远来看就是一种失败。
这两家公司有三个共同点:
现在,根据你自己的观察,你或许会发现这些绝无夸张之意。当然,获取在最近的VMworld大会上,你已经发现了一些对此的支持者;在那里,与会者的口号就是“不断变化”。
然而,保持这种态度也越来越难。VMworld搁置公有云计算的的防御性措施也表明与会者在他们的同事和客户中看到了对此的巨大热情。基础设施组也担心未来的世界——如果未来是走向破坏性的创新而不是在逐步改善又该怎么办。
为了解决这种麻烦,下面是每个公司要在开发者大战中生存的一个方法列表。
有时,会认为IT界的快速更新是如此不公平。昨天你努力去适应的需求,今天却被“下一个闪闪发光的东西”取代。但事实就是我们处在一个IT变化比我们看到的要多得多的时代——只有那些找到如何适应这场开发者之战的人才能够幸存。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29