
有“今日头条”在先,资讯类大数据会成创业风口么
大数据已经成为了一个庞大的行业。数据分析师这个职业也随着企业对大数据的分析而倔起,数据分析师就是对企业的数据进行有效的分析,得到有价值的数据,为企业创造价值。
2015年8月19日,国务院《关于促进大数据发展的行动纲要》,希望“使开放的大数据成为促进创业创新的新动力”。
狭义来看,大数据的产业链从整体上可以分为四大层,包括IT基础层、数据基础层、数据应用层和数据安全层。更细分可以分出几十个门类,每一个类别都是具有针对性的数据解决方案。
广义上看,未来大数据几乎可以在任何一个场景下发挥作用。通过数据分析师对大数据对当前业务的优化,可以发掘出更大的价值。
思达派(Startup-Partner.com)专栏作者认为,大数据驱动的服务类产品将会在未来几年大放异彩。而考虑到产品演化的路径,信息服务类的大数据将会在2016年迎来“风口”,成为“资讯大数据元年”。
1、个性化匹配:数据驱动的产品服务将成为主流
自从今日头条火爆以后,大数据和信息之间的关联就越来越强。随着去中心化的趋势加强,收集大数据和处理大数据的要求就更加强烈——如何实现千人千面的阅读,最关键的是大数据的分析处理能力。
和纯数据分析不同,数据驱动的资讯服务针对的C端用户,更关注产品的功能和体验。换言之,这一类产品的特点,是把原来由无数人力构成的产品服务,变成以数据驱动的技术密集型产品。
以新闻平台为例,过去,新浪、搜狐和网易以数以百计的编辑,支撑起门户内容的运营。现在,通过大数据,不仅可以同样实现内容的分发,而且还做到了千人千面。
再比如,大众点评依靠数以亿计的用户支撑起了餐饮点评产品,如果数据分析师通过大数据对网络上所有人的所有餐饮数据(包括收集大众点评数据)进行收集和处理,不仅会实现同样的目标,而且可能还更加精确。
2016年,类似的大数据驱动的产品会主由“推荐”变成“个性化匹配”。APP可以“个性化匹配”,创业者和投资人可以“个性化匹配”,食客和餐厅可以“个性化匹配”……精准的数据分析使得每个人得到自己想要的信息成为可能,因此,这将是2016年数据服务类产品的“主旋律”。当然,首当其冲的,就是资讯产品服务。
2、今日头条和一点资讯争霸,“创头条”成为行业“变量”
未来,所有的服务产品都应该是由大数据驱动的。从目前来看,资讯服务可能会成为大数据服务产品的突破口,也是大数据现实中商业应用的最佳范例。
1月6日,今日头条透露,截至2015年12月,已吸引3.5亿下载用户,日活超过3500万,系统可以记录他们的点击、分享、评论、收藏等用户行为,并进行复杂计算和分析。今日头条称,海量数据和算法分析,使得头条清楚地知道用户当前所处的情境——时间、地点、天气、晚睡还是早起、对什么感兴趣,从而将他们需要的信息推荐给用户,甚至还包括广告信息。
稍早些时候,一点资讯CEO李亚也透露数据驱动下的资讯是其主要发展方向:“在当下全渠道背景下,大数据可谓贯通在消费者不同场景、不同运用、不同的消费阶段中。”
据了解,一点资讯的大数据原理是以用户的“兴趣”为核心,数据分析师通过将用户主动表达和被动历史浏览数据有机融合,能够更有效进行内容的分发推荐。通过大数据算法的不断优化推荐,人们可以看到更多与自己生活、工作、个人兴趣爱好相关的个性化的、长尾的、有价值的内容。
虽然两大资讯巨头早已发力大数据资讯。但由于大数据存在的多维度以及数据应用仍处于早期摸索阶段等多个因素,这个领域仍有很多变量。
例如,创头条在去年上线网站之后,今年又上线了app。为什么在巨头之下仍然要进行这个领域的创业?仔细研究之后就会发现,和其他根据算法或者兴趣推荐个性化信息不同,“创头条”满足的是用户的精准服务需求。笔者了解到,创头条是一个关于创业方面的大数据资讯搜索引擎,用户可以通过条件订制、智能订阅、以及个性化推荐等多种方式,及时跟踪了解创业领域中海量新闻、资讯、信息。
据创头条内部人士透露,和此前已有的APP不同,用户可以用“创头条”精准指定追踪自己喜欢或关注的主题资讯。这种C2B模式的资讯服务能否成为主流?目前尚不明确,但是,这种大数据的业务模式,也为大数据应用服务产品提供了一种新的探索模式。重度垂直、深度服务的时代即将到来,而在大数据的辅佐下,资讯大数据也会越来越精准,将会为用户带来更多惊喜。
除了创头条,目前资讯领域里还有本地头条、九个头条等等各个维度利用大数据打造的全新产品。未来,可能所有的产品都是由大数据驱动的,而资讯将会成为第一个成熟的市场,这里面谁会成为最后的赢家?我们的用户会在不久之后告诉我们答案。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13