京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据意味着什么?专门团队研究大数据
周四白宫通过博客选对宣布将成立专门团队研究大数据,誓要弄懂大数据能带来什么好处,也要明白大数据背后的陷阱,以及大数据对政府的政策制定的影响。(大数据主要针对个人隐私)
大数据这东西你说一套他说一套,不管怎么说,总之大数据非常复杂。其中部分原因是大数据并不是单纯技术,虽然听上去好像是,大数据"数据分析师"是对数据收集、储存和处理的多种优化方式和技术提升,跨整个技术领域。此外,大数据所涉及到的数据、隐私、甚至是大数据的“大”,根据不同的应用环境都有不同的具体含义。大数据的研究已经进行了5年。
以下是白宫团队需要解读的关于大数据的5个方面。
1 安全并不等同与隐私。
Adobe公司和Target百货都曝光过用户数据泄漏丑闻。某些公司存储了太多的用户数据,保存时间又过久,就都会造成问题。如何避免数据被用在不该用的地方是技术要解决的问题,但是公司该如何使用数据应该是政府政策制定的问题。
2 隐私利弊共存。
现在再反复谈论国家安全和隐私已经没有太多必要,自从斯诺登事件以后,这类争论无非是关于政府收集个人隐私的对错。但是,人们有必要记住在这个消费化世界,如果要享受便利,就要牺牲隐私。某些公司使用个人隐私的方法不太受人们喜欢,要纠正这些公司的错误用法已经变得很容易,甚至成为一种必要。我们要知道,在个人隐私和免费服务之间,特别在互联网上,我们必须做出牺牲。
3大不能说明什么。
在我看来,无论是海量的数据收集量还是数据的来源范围之广泛都只是障眼法。如果超出了系统的处理能力和分析能力,太多的数据只能带来问题。大框架下的操作同样可以应用于单个的人,这才是毋庸置疑更麻烦的。不论是对犯罪嫌疑人的GPS活动轨迹追踪还是各种面部识别APP,不论是社交网络还是健身设备,搜集和分析所需的个人信息的方法比起从前多多了。
4 个人所指的概念和以前不同。
互联网的庞大体量(人们信赖的各种服务的载体——从信用卡到Gmail),以及收集数字信息的宽松政策完全颠覆了私人和公共的概念——尤其在合法环境下——所以要鉴别是否违反法律变得更加困难。这一切只是因为收集信息变得更容易,但是,并不意味着我们可以滥用数据。
5 数据是变革的未来。
人们不能视而不见的现实已经发生:任何一条会影响数据使用和收集的法规对未来世界的影响都是巨大的。这不是夸大其词,但是只要一想到Google、微软和Facebook这种大公司在数据处理领域方面的强大能力,一想到这些公司已经将大数据应用在响应领域这个事实,我们就应该清楚数据的重要性已经毋庸置疑。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11