京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何全面掌握别人家的APP数据
老师,请问一下,在哪里可以了解一个App的各项数据,比如下载量、排行数据呢?我"数据分析师"可以通过什么途径去深入的研究一个App(该产品是别人做的,我并不能获取内部数据)?
好的,下面我们就有请老师来作答一下~
(以下内容为老师亲自回答)
应该说这个一个较为普遍的问题,这里我推荐几个方法供大家参考:
首先,大部分数据都是模拟趋势数据,要获得一个产品的绝对历史下载量是一件很难的事情,你"数据分析师"要知道每个App都是分版本向App store或者安卓应用商店提交的,所以理论上我们需要看的是这个版本的下载量和活跃度。
一 绝对下载量和活跃度。
你"数据分析师"可以购买收费数据,就我经验,BI数据、艾瑞数据都是有一些具体检测数据,能够拿到一断时间内的分类App的数据,但价格不菲,一般大公司都有购买。
当然,BAT有自己的渠道来源,百度有很深的底层数据检测模型,能够详尽的了解App的下载和启动情况。
二 评价数的倒推模型——App store
1、看当前版本和历史版本的评价数。
一般情况下,评价人数占总下载人数的三千分之一左右,或者更低。但新应用和只有几十个评价的应用可能有刷评价的风险,需要剔除刷的数据。所以你可以用评价数×2000得到一个下载数的预估值。
这款拓词App,当前版本的评论数在129个,按照二千分之一的评价比例,估计下载量在10-20万之间。因为他的评价数量不够大,所以可能要适当减少乘的数值。

这是今日头条,看累积下载的话,我的预估是52039×2000=1亿下载量。这是累积下载量,而一般应用的月活在5-10%左右,那么其月活用户在500-1000万用户数左右。当然,阅读类可能会更高一些。
肯德基爷爷这款app还是有点意思的。下载量在400万左右,但恶评如潮的感觉。

如果你"数据分析师"要问安卓的情况,我可以很欣慰的告诉你,安卓的应用商店都有下载量,那个下载量除以3之后的值基本就是了,有些刷单严重的需要除以10哦。所以看App store吧。
这种分析方法就是建立一个已知的app品类推算模型,然后讲其中的变量替换为未知的那个app来看。这种方法是我从早年Alex的排名推算中学习而来的。因为评价一个产品的用户大致比例是相同的,千分之一或者二千分之一。
2.App store 评价模型
什么叫App store评价模型呢?就是评价形成的一个模型。
这是一款评价模型为“E型”的产品,从评价看,用户反馈有很多硬伤,产品体验和价值存在明显的可视性缺点。

这是一款“F型”的评价模型,整体体验没有可见硬伤,产品发展路径比较乐观。
这是一款“G型”评价的产品,它有显而易见的问题需要解决,否则会影响产品自发增长。
总结起来就是:我们"数据分析师"不仅要看这款产品的现在下载量,也可以通过其评价模型来看接下来增长的预期。
三 参考数据网站
"数据分析师"要培养对数据的敏感性,可以经常看看百度统计、Talking Data等网站。Talking Data主要拿的是安卓应用的趋势和排行。
TD有很多排行榜,其用户量的算法可以通过已知某款产品,比如我知道去哪儿的用户覆盖量,去倒推其排行榜的其他App的用户数量。
TD提供了100个排行,都是免费的,当然也有收费服务。
说在最后
"数据分析师"觉得主要还是要对数据有敏感性,拿自己公司已知的产品数据去倒推那些未知的数据,建立自己的数据模型是最关键的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30