
四步帮你分析用户流失原因
1:数据分析师对用户流失原因调研时不知如何入手?2:数据分析师不知如何才能找到用户真正的流失原因?3:数据分析师不知如何把调研结果应用到产品改善中?4:数据分析师到底要怎样才能做好用户流失原因研究呢?
在做了一些用户流失原因调研项目后,笔者总结了用户流失原因调研四步经。
第一步:了解调研目的
无论做什么调研,研究员首先要确认调研目的,只有知道需求方最终想要解决什么问题才能做好调研。用户流失原因调研不只是简单的了解用户流失的原因就可以,产品经理提出用户流失原因调研需求,最终目的一般有两个:(1)防止用户流失;(2)挽回流失用户。
最终目的不一样,调研需要解答的问题也不一样:
(1)防止用户流失
用户为什么会流失?(用户流失原因)→用户会继续流失吗?(现有用户的不满意点与流失原因是否一致?)→如何防止用户流失?(应采取什么样的改善措施)
(2)挽回流失用户
用户为什么会流失?(用户流失原因)→流失用户回流的可能性?→什么情况下他们愿意回来?(回流触点)→如何挽回流失用户?(应采取什么样的改善措施)
第二步:找出用户流失的真正原因
无论产品经理最终的目的是什么,他们提出用户流失原因调研需求证明他们都非常关心用户为什么会流失,所以找出用户流失的真正原因非常重要。但要找出用户流失的真正原因并不容易,有时问用户为什么不再用某产品,他们会用“没钱”or“没时间”等借口敷衍我们,用户因为“没钱”不用我们的产品了,但其他价格一样的产品却销售得如火如荼,这合理吗? “没钱”or“没时间”这些借口我们当然不接受,那我们要如何找出真正的原因?笔者总结了三种方法:
(1)深入追问——5个WHY
连续问用户5个问题以获得深度递进的答案,这个方法能有效的使用户表达出深层的想法和原因。
案例:以一款休闲游戏用户流失原因调查为例
访问员:为什么最近一段时间没登录过***了?
用户: ***(游戏角色)病了。
访问员:为什么***病了就不登录了?
用户:因为一登录***就会死,不想见到它死。
访问员:既然害怕***病死,那为什么没带***看病(指的是在游戏中看病)?
用户:没钱,看不起病。
访问员:为什么没钱?
用户:***很容易生病,让***打工挣的钱不够它看病。
访问员:为什么不带***看免费医生(游戏中可免费看病)?
用户:不知道可以免费治病。
该案例最后了解到导致用户流失的原因有两个:***(游戏角色)打工挣钱少、用户不知道可以免费冶病。
注:图片来源于IDEO方法卡
(2)侧面对比相关产品
有时用户也意识不到他们行为背后的真正原因,直接追问他们可能问不出具体原因,这个时候可以通过侧面对比去激发用户潜意识,挖掘出真正的流失原因。
案例:
访问员:为什么不续订*钻了?
用户:没钱啊。
访问员:您目前有没有开通其他的包月业务?
用户:开通***。
访问员:为什么开通***却没有开通*钻?
用户:因为觉得***更实用,特权更多。
访问员:***里的哪些特权最吸引您?
用户:红名、魔法表情
该案例了解到用户并不是因为“没钱”而不再继订*钻,而是由于*钻的特权没法吸引用户继续开通,而用户喜欢什么类型的特权呢,这需要我们(数据分析师)继续深挖。
(3)行为分析
当我们通过网络问卷的方法调研时,很难实现层层深入追问,对于用户来说,原因类题目他们很难回答,而行为类题目较容易回答,且行为类题目回答真实性较高,有些深层的流失原因,不一定需要层层深入追问为什么,有时可以通过行为分析解决。
案例:
您的***(游戏角色)挣钱的方式主要是:
数据交叉分析发现,因为挣钱难而流失的***游戏用户主要的挣钱方式是“打工”,而我们和产品经理沟通后了解到实际上***(游戏角色)“打工”不但不能挣钱、而且会赔钱,因为“打工”会让***(游戏角色)损耗,***(游戏角色)会更容易脏、更容易饿,用户就要花更多的钱去养它们,成本大于收益。但很多用户不知道这个情况,所以一直选择“打工”挣钱,最后没办法维持游戏角色在游戏中的生存,导致流失。
第三步:解答两大最终目的其他问题
(1)用户会继续流失吗?——了解现有用户与流失用户的差异
要了解用户是否会继续流失,就需要对现有用户进行调研,如果现有用户和流失用户是同一类用户,那现有用户会继续流失。
怎么知道现有用户和流失用户的差异呢?那就需要了解现有用户的态度,现有用户不满意的方面是什么,如果现有用户不满意方面与流失用户流失原因一致,那证明现用用户和流失用户没明显差异,如果导致用户流失的问题没解决,用户会继续流失。
(2)用户什么情况下才愿意回来
首先要知道流失用户回流的可能性,如果大部分用户表示无论产品怎样改变也不会再尝试使用,那在挽留用户上投放更多资源也没作用。
其次是了解用户在什么情况下愿意回来,这包括但不限于流失原因改善,除了流失原因改善外还需要相关的促销活动,需要询问流失用户进行了解。
最后是确认进行挽回改善措施会不会引起现有用户的不满,要了解现有用户满意及不满意的方面,确保挽回流失用户的措施不会对现有用户产生影响。
第四步:设计改善措施
知道了用户侧反馈的产品问题,那具体要怎么改善产品呢?建议可以参考“GAP模型”了解缺口在哪里,在哪个环节出现问题。
(1)认知缺口:产品经理不知道用户想要的是什么。若出现了认知缺口,则首先是让产品经理清楚知道用户流失的真正原因。
(2)执行缺口:产品经理知道用户想要什么,但实际做出来的产品与设计中的不一致。若出现了执行缺口,则要了解具体哪个执行步骤出现问题,是资源的欠缺还是技术难以实现。
(3)传递缺口:产品的宣传和指引不能让用户对产品真正认知了解若出现了传递缺口,则要了解用户现在的感知是怎么样的,在哪些宣传和指引上出现了问题。
(4)流失缺口:用户体验到的产品和期望的不一样。
案例:导致用户流失的原因主要是社区游戏单调更新慢
用户期望:多种多样的游戏,希望至少每月推出一款新游戏。
产品经理认知:知道用户期望多种多样的游戏,游戏更新频率越快越好。
设计执行:每周更新一款新游戏、不同类型的游戏上百款。
用户认知:觉得快半年没更新过游戏了,来来去去就只有几款游戏。
从这个案例"数据分析师"可以发现,整个过程中主要是用户认知出现了问题,也就是出现了传递缺口,说明产品的宣传指引做得不好,那我们的改善措施就应放在产品的宣传指引上,增加新游戏的宣传,或在指引中明确告诉用户游戏更新的频率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18