京公网安备 11010802034615号
经营许可证编号:京B2-20210330
产品经理,你是如何分析产品运营数据的?
今天我们说说浅谈产品运营四要素最后一个要素,数据分析;说到数据分析,相信不论是做产品运营、用户运营或是推广的小伙伴来说都不陌生,数据分析师能充分反映出你运营做出来的效果如何?并且通过它还能察觉出问题所在,以便于及时找出解决问题的方法。
在前面我们说到产品、用户、渠道,每个要素都有它对应的数据指标进行效果反馈,如果纯讲概念方面的东西,相信大家不是很明白,那我们通过一个案例进行说明;比如老板交给你一个资讯类APP的项目,他在给你下达任务前,APP还处于想法阶段,那么这个时候你怎么办?这个时候你就需要运用数据分析来帮助你完成这项工作:
做这款APP之前,我们要先明白商业目标是什么,也就是我们做这款产品的目的是干嘛?这个很好理解,建立庞大用户群争抢风投融资和相关的增值服务(指广告服务),那我们有了这个目标后,就可以进行下一步了。下一步是什么,当然是竞分析和市场调查,通过这两方面内容的获取APP相关的需求,需求中包括用户人群、兴趣爱好、终端设备、内容方向等需求定位,然后便可以进行下一步用户体验布局和原型图的设计;后面的事就是技术开发的活了。经过一段周期后,这款资讯APP即将上线了。
前期的工作或许和数据分析关系不大,但是我们制定的目标和数据分析有一定的关联,因为目标是我们通过数据分析优化和改进的方向。当然上线之后,我们会经过各种测试和bug的修复才能到各大应用商店进行推广和宣传,以确保这款APP到用户手机用户体验是最好的。后续通过一段时间运营和推广,我们将相关的数据提取出来,前提是这些数据精准度是非常高的。下面我们先从这款APP提取相关数据进行分析:
一、产品方面数据项:下面我们说说分析数据的几种方法,我在推广运营的经验已经有5年,用的最多两种方法分析是图表对比分析和归因分析。
图表对比分析,这种方法是先将批量或者某个时段的数据生成图表,这里图表有很多种,有饼图、柱状图、曲线图等,可以根据数据需求方的需求而来。虽然图形不一样,但都能反馈出相同的问题,这个是关注的核心点。
那么怎么进行对比呢?对比不是让你口头上去做对比,而常用的是环比和同比,当然数据比较敏感的可能不需要通过图形就能看出问题,但是为了直观和容易理解,图表的生成是非常有必要的。
对比的数据项并不是上面罗列的全部,而是取核心项,这样显得不会太繁锁;通过分析后,用文字将发现的问题一一罗列,同时附上自己的看法和解决问题的建议,最后便通过邮件形式发送给需求方,整个过程尽可能体现做数据分析师专业性的一面。
归因分析,是指通过结果来分析原因。这里举例说明可能比较好理解,假如你负责的的这款APP某一周的注册转化率为0.5%,而正常情况下是1.2%,下降了0.7%个点,那么该怎么分析?我们先要看注册转化率是怎么来的,先要明白注册转化率是怎么来的,即注册用户数/下载数。
分析思路:注册转化率在下载数不变的情况下成正比,在注册用户数不变的情况下成反比。这里便分了两种情况:要么是在下载数变化不大的情况下,注册用户变少了;要么是在注册数变化不大的情况下,下载数增多了;而这种情况肯定是访客体验APP时,某个细节做的不到位,而导致了跳出。
注册用户数减少,先看看APP注册流程是不是出了问题,其次看打开APP人数是不是减少了,减少是ASO排名下降了还是竞争对手增加的原因,然后做出相应的调整,通过这样排除再观察数据变化。同样在最后,将发现的问题以文档形式罗列,以邮件形式传达给需求方。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01