京公网安备 11010802034615号
经营许可证编号:京B2-20210330
怎么分析产品运营中的数据?
今天我们说说浅谈产品运营四要素最后一个要素,数据分析;说到数据分析,相信不论是做产品运营、用户运营或是推广的小伙伴来说都不陌生,数据分析能充分反映出你运营做出来的效果如何?并且通过它还能察觉出问题所在,以便于及时找出解决问题的方法。
在前面我们说到产品、用户、渠道,每个要素都有它对应的数据指标进行效果反馈,如果纯讲概念方面的东西,相信大家不是很明白,那我们通过一个案例进行说明;比如老板交给你一个资讯类APP的项目,他在给你下达任务前,APP还处于想法阶段,那么这个时候你怎么办?这个时候做为数据分析师的你就需要运用数据分析来帮助你完成这项工作:
做这款APP之前,我们要先明白商业目标是什么,也就是我们做这款产品的目的是干嘛?这个很好理解,建立庞大用户群争抢风投融资和相关的增值服务(指广告服务),那我们有了这个目标后,就可以进行下一步了。下一步是什么,当然是竞分析和市场调查,通过这两方面内容的获取APP相关的需求,需求中包括用户人群、兴趣爱好、终端设备、内容方向等需求定位,然后便可以进行下一步用户体验布局和原型图的设计;后面的事就是技术开发的活了。经过一段周期后,这款资讯APP即将上线了。
前期的工作或许和数据分析关系不大,但是我们制定的目标和数据分析有一定的关联,因为目标是我们通过数据分析优化和改进的方向。当然上线之后,我们会经过各种测试和bug的修复才能到各大应用商店进行推广和宣传,以确保这款APP到用户手机用户体验是最好的。后续通过一段时间运营和推广,我们将相关的数据提取出来,前提是这些数据精准度是非常高的。下面我们先从这款APP提取相关数据进行分析:
一、产品方面数据项: 核心指标:
产品规模:包括下载量、注册激活用户数、日均活跃用户数市场运营:包括活跃用户比例、用户主要来源、留存率商业效果:日均流水、增值用户转化率、增值服务金额等
衍生指标:
浏览方向:人均浏览量、人均浏览时长、启动次数、访问频率注册方向:每日下载打开APP数、每日新增注册数、注册转化率留存方向:使用留存、购买留存互动方向:每日评论用户数、交互反馈次数(收藏、分享、喜欢等功能)
二、渠道方面数据项:消费数据:消费、展现量、点击数、平均点击价格、平均排名流量数据:访问次数、访客数、IP数转化数据:转化率、盈收额、ROI
三、用户方面数据项:用户体验数据:跳出率、到访率、停留时长、访问深度访客属性:性别、职业、学历、年龄、地域、使用设备、操作系统
当我们拿到以上三方面的数据后,当然这里的工作是数据分析师专员要做的内容,而且是每天都需要做统计,并且要保证数据的准确性。
下面我们说说分析数据的几种方法,我在推广运营的经验已经有5年,用的最多两种方法分析是图表对比分析和归因分析。
图表对比分析,这种方法是先将批量或者某个时段的数据生成图表,这里图表有很多种,有饼图、柱状图、曲线图等,可以根据数据需求方的需求而来。虽然图形不一样,但都能反馈出相同的问题,这个是关注的核心点。
那么怎么进行对比呢?对比不是让你口头上去做对比,而常用的是环比和同比,当然数据比较敏感的可能不需要通过图形就能看出问题,但是为了直观和容易理解,图表的生成是非常有必要的。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20