京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1月8日,2016大数据生态纵览峰会在北京成功举办。逾千名来自全国各地的大数据行业从业者和业内知名专家、领军企业高管汇聚一堂,共同探讨中国大数据行业的发展现状和未来走向。
此次峰会由经管之家CDA数据分析师主办,邀请了台北医学大学教授谢邦昌、IBM大数据产品总监洪建勋,永洪科技联合创始人谢玲,贵阳大数据交易所首席运营官李国静,华为大数据总监刘冬冬,网易云市场总监章鑫辉,Oracle(甲骨文)全球职业教育项目北方区经理戎鹏、TalkingData合伙人、执行副总裁林逸飞,SAS中国首席咨询顾问高居泰等嘉宾出席峰会。
“大数据成“利器” 2016或出现新蓝海
峰会上,CDA协会秘书长玉霜峰发表致辞。他表示,助力数据分析行业的整体进步,是CDA协会始终不渝的奋斗目标,希望有越来越多的机构、企业和数据分析师能为行业进步贡献力量。
CDA协会秘书长玉霜峰发表致辞
主论坛与分论坛共30余名嘉宾分享了自己的观点,探讨大数据领域的创新发展和未来前景。
在技术层面,IBM中国区大数据产品总监洪建勋介绍, 去年2月份IBM与业内IT公司一起成立了ODP的组织,共同打造一个企业级客户所共同所期望的Hadoop环境,目的是使得公司之间工具和产品能够互融互通;去年6月份IBM对Spark开源,把十多年的积累无偿开源给Spark社区,在旧金山建立一个Spark的社群,研究Spark和已经有的业务融合在一起,做更多的发展。
“在我们看起来技是非常重要,但是技术并不是为了技术而技术,所有的技术为业务服务”,洪建勋介绍,技术很容易被淘汰,IT行业跟通讯行业这几年发展非常快,从业人员不掌握跟业务相关的东西,过几年以前学的知识就会被刷新掉。
在“以和为贵”分论坛,华为大数据总监刘冬冬告诉记者,大数据是一个可以细分出许多领域的行业,要有数据源,要有数据合并公司,要有数据挖掘,要有数据应用、可视化、存储和计算,还要有咨询,蕴藏着很大机会,但是目前这个产业链条还不完善,最难的是把这些不同功能的公司组合起来。
“2016年大数据行业会继续加速发展,可能在2017年是一个爆发点,所有行业行业都会被大数据冲击,所有企业都会意识到该玩大数据。产品同质化越来越很严重,最终会变成以客户为中心,以数据为支撑。未来企业的竞争方式是你有5个维度的数据,而我有10个维度的数据,那我就赢了。”刘冬冬说。
随着企业对数据服务方面的需求,云服务市场也会出现新的增长点。网易云市场总监章鑫辉认为,目前PaaS服务在国内的市场份额在国内占了不到10%,未来这方面的市场会有一个比较大的增长。“目前美国市场中to B业务的资本配比占到了40%,C端业务占60%,而在中国 to B业务占到了1%,大部分资本流向C端业务,而各种C端业务出现也就意味着各种企业需要被服务,需要技术服务、管理服务等等,在云服务IaaS层趋于饱和的情况下,PaaS曾和SaaS层可能是下一个增长点。”章鑫辉说。
Oracle(甲骨文)全球职业教育项目北方区经理戎鹏更加看好那些利用大数据创业者的未来,“未来预计会有许多创业公司涌现,可以会出现类似于BAT的公司,体量肯定没那么大,但是它的创意是全新的,能找到一个新的蓝海”。
“构建数据人才考核标准 甲骨文CDA开启联合认证
随着大数据产业在中国井喷式发展,数据人才缺口随之增大,数据分析人才培养教育成为大数据产业链中不可或缺的一环。而同时,数据分析师行业也面临着无认证标准、无考核体系等问题。
峰会当天,经管之家CDA数据分析师与Oracle(甲骨文)举行了签约仪式,双方将在数据分析人才认证方面展开合作,在大数据领域推出联合认证。
CDA数据分析师市场总监曹鑫介绍,去年11月份,CDA数据分析师与中华采矿协会(台湾)达成战略合作联盟,建立两岸专业人才流动性认证制度,这次与甲骨文的合作是CDA在建立行业认证标准方面的又一次新尝试。
“目前培训行业普遍存在一个问题,就是急功近利”,Oracle(甲骨文)全球职业教育项目北方区经理戎鹏表示,这一点体现在对所谓流行技术的追逐,有些底层和核心的技术与能力是不会过时的,反而会随着分析师职业生涯越来越值钱,甲骨文在做培训的时候非常关注底层技术的培养,CDA数据分析师在这方面同样把握得很好,既会考虑到行业里的流行技术,也会考虑到底层核心内容,这也是促成双方合作的原因。
曹鑫表示,未来CDA数据分析师将与更多优秀展开深入合作,推出更多优质的数据分析师人才教育课程,共同做好数据分析人才培训市场。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29