京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源 | 36大数据
根据麦肯锡2011年发布的一份研究报告,到2018年世界范围内将会出现高达140,000 至190,000的“大数据”岗位空缺:各行各业已经积累起来大量的数据分析需求,但市场上具备使用、分析和让数据说话能力的人才供不应求。
2015年马上就要过去了,在这一年里,“大数据”相关职业在全球就业市场的情况到底如何?我们通过WANTED Analytics和福布数据分析斯杂志刚刚公布的2015年数据为大家进行一些总结。
那些“大数据”岗位在哪里?
WANTED Analytics公司专注于就业市场数据分析,其数据库包含来自150个国家的10亿个岗位信息,在这次统计过程中,其将“大数据”定义为数据分析、数据采集、数据挖掘和数据结构四类技能。在对过去12个月美国就业市场“大数据”相关岗位的分析中发现:
就岗位数量而言,需要“大数据”技能的岗位空缺呈现高速增长,如下图所示,其中“大数据”解决方案的销售人员、计算机系统分析师、管理分析师、IT项目经理、和信息安全分析师岗位的增幅都在100%以上。这一增长趋势也将延续至2016年。

Source: Wanted Analytics & Forbes.com
就招聘企业而言,易安信、IBM、思科、甲骨文在2015年招聘的“大数据”人才最多。其他前十的企业信息如下:

Source: Wanted Analytics & Forbes.com
“大数据”岗位需要学什么专业?
首先具有相关背景的本科毕业生或职业人士通过短而实用的数据分析课程,能够迅速满足相关企业的岗位空缺,因而非常抢手。
其次想要在本科阶段开始为自己进入“大数据”领域打好基础的话,主要可以通过在学习三个传统学科专业(数学和统计、计算机科学、商科)的基础上选修培养相关技能的课程来满足就业市场的需求。目前大部分的“大数据”从业人员并不具备数据分析的学位,而是具备了相应的技能。

就数学和统计专业而言,目前绝大多数的数据科学家是数学和统计专业背景,所以你选择的学校可能并没有所谓“数据分析”这个专业,但是其数学和统计专业很可能有开设一系列课程帮助你培养大数据分析的能力,甚至还会建议你去选修一些外系的编程或市场营销课程来丰富你的技能组合。
另一个进入大数据领域的方式是学习计算机科学专业,这一路线将会侧重于学习大数据采集和分析的技术问题。
目前市面上许多的大数据技术如MapReduce, NoSQL, and Hive就是来源于软件工程师的发明创造。所以如果你对计算机科学感兴趣,又想在毕业后从事大数据相关岗位,你可以在本科阶段侧重于对人工智能、机器学习和数据理论的学习。
最后一个和大数据领域密切相关的本科专业是商科下面的“管理信息系统(management information systems)”或“计算机信息系统(computer information systems)”专业。
如果说计算机科学专业的学生研究的是如何让大数据技术变得更快更好,那商科学生学习的就是如何用大数据技术去为企业赢得利润,因此更关注的是如何把大数据技术与市场营销、产品定位和购买模式等等结合起来。
与此同时,越来越多的商学院开始开设专攻商业数据分析的本科和研究生项目,尽管不像计算机科学专业对于理工科知识有那么高的要求,但是还会涉及一定的数据库设计、分析和编程,以及相关统计软件如Hadoop和SAS的使用。
End
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27