
文 | Samantha Zhang来源 | GRAPHIQ
摘要:虽然如今好的配色方案已经唾手可得,但为数据可视化找到合适的配色方案,却仍是一项巨大挑战。
在Graphiq,事情甚至更加棘手,因为我们要通过上千种各不相同的数据集合来传递信息,它们有着各自迥异的视觉表现。
目前的问题
我们没有立刻开始建立自己的配色表,而是发起了一些调查,研究网络上已存在的配色方案。令人惊讶的是,我们发现其中只有少数是为复杂的图表和数据可视化而设计的。我们发现一些不能使用现有配色的原因。
问题1:辨识度低
我们看过的许多配色方案都不适用于数据可视化。不仅由于颜色的明度差异不大,其实它们在创造时就没有考虑过辨识度。Flat UI配色是最广泛使用的配色之一,原因显而易见:它非常优秀。但是,正如它名字所述,这是为界面而设计的。使用Flat UI配色的话,色盲者就难以辨认出数据图像。
Flat UI配色的完整色彩、红色盲模式、灰度模式。
问题2:色彩不够多
另一个问题是,许多现有配色方案没有足够的颜色。创造Graphiq的数据可视化时,我们需要至少6种颜色的配色方案,甚至有时需要8到12种颜色,才能满足所有的应用场景。我们看过的许多配色方案都没有足够多的色彩供选择。
下面是Color Hunt里的一些例子:
虽然这些都是很棒的配色,但它们都不够灵活,无法提供丰富的色系。
问题3:难以区分
不过等一下,还有一些配色方案看起来像是渐变——理论上说可以创造出任意数量的颜色,对吧?
不幸的是,它们明度差异通常不大,其中许多颜色很容易变得无法区分,就像这一组,同样来自Color Hunt:
我们试着选第一组,把它扩展为10级色彩:
如果普通用户能正确的区分出这些颜色,并与相应的数据项对应起来,我就服了,尤其是能区分出左边的4种绿色。
我们的方式
在Graphiq,我们以数据为生命,并且投入了大量时间寻找能够用于数据可视化的配色方案,不是一组,而是许多组。我们在这个过程中受益良多,并且打算分享这些能够创造出灵活配色的准则:
第1条:色调与明度的跨度都要大
要确保配色非常容易辨识与区分,它们的明度差异一定要够大。明度差异需要全局考虑。选择一种单色系的配色,并且测试它在红色盲、绿色盲与灰度模式下的表现。你就能迅速了解这个配色的辨识度水平。
Google Material配色中的浅蓝色的完整色彩、红色盲模式与灰度模式。
但是,有一组明度跨度大的配色还不够。配色越多样,用户越容易将数据与图像联系起来。如果能善加利用色调的变化,就能使非色盲用户更加轻松。
对于明度与色调,跨度越大,就能承载越多的数据。
第2条:仿照自然的配色
设计师都知道一个小秘密,对于理性派们而言这似乎不符合常识:并非所有颜色都是均等的。
从纯数学的角度来看,淡紫到深黄的过渡,与淡黄到深紫的过渡,感觉大概相似。但我们在下面可以看到,前者感觉很自然,后者则不是。
这是由于我们已经习惯于那些长期存在于自然界中的渐变。在华丽的日落中,我们就能看到明黄色向深紫色的渐变,但却没有哪里能看到淡紫色向深黄色的过渡。
照片来源于Kyle Pearce、Wesley Fryer、和Jon Sullivan。
类似地,还有浅绿色到藏蓝色、鹅黄色到深绿色、棕红色到蓝灰色,等等。
照片来源于Kbh3rd、Ian Britton、和Jon Sullivan。
由于我总能看到这些自然的渐变,所以当我们在可视化图表中看到对应的配色时,会感觉熟悉和愉快。
第3条:使用渐变,不要选择一系列固定颜色
渐变配色结合不同色调,对两者都最好。无论你需要2种颜色还是10种,渐变中都能提取出这些颜色,让可视化图表感觉自然,同时保有足够的色调与明度差异。
改用渐变的思维并不容易,不过有个好方法,可以在Photoshop中拉辅助线到断点位置,与数据的数量对应上,然后持续对渐变进行测试与调整。以下是我们在修正渐变时产生的屏幕截图。
可以看到,我们将配色表紧挨着顶部的灰度渐变,调整渐变叠加(之后就能得到精确的渐变色值),然后从那些断点处选取颜色,测试配色在实际运用中的效果。
我们的配色方案
我们对最终成果感到兴奋。下面是我们使用的部分配色,它们都有从纯白到纯黑的渐变,以达到最大限度的明度差异。
冷色、暖色和霓虹色。
配色的实际运用
长话短说
尽管优秀的配色方案越来越多,但并非所有都适用于图表和数据可视化。我们的配色方法就是创建色调与明度变化都足够大的自然渐变。这么做能使我们的配色便于色盲辨识,对其他人则更明显,并且可以满足1到12种数据。
阅读、工具和资源 [更新]
这个过程中,我们发现了一些很棒的资源和文章,与我们得出的结论类似,但他们采用了更精确的方法,甚至钻研了色彩理论。我们觉得应该分享出来,供大家深度阅读:
阅读
如何避免等差的HSV颜色,作者Gregor Aisch
通过chroma.js控制多色调的色彩比例,作者Gregor Aisch
微妙的颜色,作者Robert Simmon
翠绿配色方案,作者Bob Rudis、Noam Ross和Simon Garnier
MATLAB色彩地图,作者Steve Eddins
工具
数据颜色采集工具——一件很趁手的工具,让你保持浓度不变的同时轻松选择配色
Chroma.js——一个处理色彩的JavaScript库
Colorbrewer2——热点图与数据可视化颜色工具,自带了多色调与单色调的方案
其他资源
我们还找到一些其他爱不释手的配色资源。虽然它们并非专为数据可视化而设计,不过我们觉得或许对你有帮助。
ColorHunt——高质量配色方案,能够快速预览,如果你只需要4种颜色,这是绝佳的资源
COLOURlovers——很棒的颜色社区,其中有许多工具可以创建配色方案,还有设计模式
ColorSchemer Studio——强大的桌面取色应用
Coolors——轻量级随机配色生成器,你可以锁定你想要的颜色,然后替换其他的
Flat UI Colors——很棒的UI配色,这是最流行的配色之一
Material Design Colors——另一套优秀的UI配色。它不仅提供了跨度巨大的颜色,也为每种颜色提供了不同的“色深”,或者说明度
Palettab——一个Chrome插件,在每个标签页里呈现一套新的配色方案和字体灵感
Swiss Style Color Picker——另一个优秀的配色方案集
希望本文对你有所帮助!你建立配色方案的过程是怎样的?你还用到其他的工具吗?我们想听听你在配色与可视化图表方面的经验。
作者简介:Samantha Zhang
Senior UI/UX @GraphiqHQ. Tutorial writer @TutsPlusCode. Product maker. Data nerd. Side project ninja. More at http://samanthaz.me/ and @moyicat
本文链接:https://medium.com/graphiq-engineering/finding-the-right-color-palettes-for-data-visualizations-fcd4e707a283#.s6benocrb
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29