
用SAS模拟随机数据 求PIE值
刚刚看到一本好书《统计模拟》作者叫罗斯[英文:Sheldon M. Ross. Simulation(4th Ed).Elsevier Inc..2006 ]. 顾名思义,这是一本描述怎么利用模拟一些符合统计学理论的数据,用途很广,也就是说实际中的任何数据的分布都符合某种统计学模型,于是在没有得到真实数据之前,数据分析师可以通过模拟数据来研究这些现实中的问题。如果通过模拟来研究未知问题,可以说得上是研究境界很高了。总不能拿到一些实际数据,画个好看的图,就觉得自己可画遍天下了吧。
由于自己不是统计出生,但是受过统计学老师的循循教诲,凡事从简单开始。于是goolge了一下,当当中有这本书的中文介绍:
本书系统阐述了统计模拟的一些实用方法和技术。在对概率的基本知识进行了简单的回顾之后,介绍如何利用计算机产生随机数以及如何利用这些随机数产生任意分布的随机变量、随机过程等。然后讨论了一些分析统计数据的方法和技术。如Bootstrap(自助法)、方差缩减技术等。接着讲述了如何利用统计模拟来判断所选的随机模型是否拟合实际的数据。最后介绍MCMC及一些最新发展的统计模拟技术和论题,如随机序列函数和随机子集函数的评估。本书在每章的最后还提供了不同难度的习题。本书可作为高等院校数学、统计学、科学计算、保险学、精算学等专业的教材,也可供工程技术人员和应用工作者参考。
一看有很多不懂的术语,顿时心生敬仰,后面写着可以供“工程技术人员”参考,很显然,我可以是这本书的读者。全书近300页,在今天剩下不多的时间内,很显然,我决定不去看这本书,哪怕是一个字。还是老师的教导,从简单开始。google到一个有趣的问题:用统计模拟计算圆周率pie值。Forcode提供了一种用excel求解pie的详细过程,然后有人用Mathematica计算出来了。Hujiangtang很仔细的阐述了什么是随机数?什么是蒙特卡罗模拟?为什么选择SAS做蒙特卡罗模拟?SAS怎么做出来这些,还可以做哪些哪些分布…… 其中引用这个用统计模拟计算pie的例子和上述用excel和mathematica的方法,可是就是不提供解决这个问题的SAS代码,在我看来,这是不可想象,我很仔细的找了半天,未果,于是我自己编了下列代码,用SAS来实现模拟pie值。
借用别人写的原理和图来说明一下,
原理很简单:
1)生成随机数——生成n个均匀落在正方形内的点;
2)对落在正方形内的n个点,数一数正好落在圆里面的点的个数,假设为k(另外n-k个点就落在圆外面的正方形区域内)。数据分析师培训
3)k/n就可以大致认为是圆的面积与正方形的面积之比,另其等于pai/4,就可以求出圆周率∏的估计值。n越大,算出来的pai值越精确
SAS实现代码:
%let num_s=10000;
data ex;
do i= 1 to &num_s.;
x=ranuni(0); y=ranuni(0);
area=sqrt(x**2+y**2);
output;
end;
run;
proc sort;
by area;
run;
data ex2;
set ex;
y1=.;y2=.;
num=_n_;
if area<=1 then y1=y ; else y2=y;
if area>1 and lag(area)<=1 then
do;
pie=(num*4)/&num_s.;
sas_pie=constant(‘pi’);
put pie= sas_pie=;
end;
run;
FILENAME file “c:\simulation.png”;
goptions reset=all hsize=8cm vsize=8cm noborder device=png gsfname=file;;
symbol1 v=dot color=’red’ height=0.3;
symbol2 v=dot color=’blue’ height=0.3;
proc gplot;
plot y1*x y2*x/overlay noaxis;
run;
quit;
模拟的点数为 100时pie=3;1000时,pie=3.068; 10000时, pie=3.1392;100000时pie=3.13543;1000000时,pie=3.141524,10000000时,pie=3.1418008。当然SAS也提供了pie的精确值供使用,使用函数constant就可以:sas_pie=constant(‘pi’); 值为:3.1415926536。上面的示例只是为了演示统计模拟的使用,其实SAS提供了很多种随机函数,几乎所有分布的随机函数供大家使用,这里就不详述了.CDA数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16