京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用SAS模拟随机数据 求PIE值
刚刚看到一本好书《统计模拟》作者叫罗斯[英文:Sheldon M. Ross. Simulation(4th Ed).Elsevier Inc..2006 ]. 顾名思义,这是一本描述怎么利用模拟一些符合统计学理论的数据,用途很广,也就是说实际中的任何数据的分布都符合某种统计学模型,于是在没有得到真实数据之前,数据分析师可以通过模拟数据来研究这些现实中的问题。如果通过模拟来研究未知问题,可以说得上是研究境界很高了。总不能拿到一些实际数据,画个好看的图,就觉得自己可画遍天下了吧。
由于自己不是统计出生,但是受过统计学老师的循循教诲,凡事从简单开始。于是goolge了一下,当当中有这本书的中文介绍:
本书系统阐述了统计模拟的一些实用方法和技术。在对概率的基本知识进行了简单的回顾之后,介绍如何利用计算机产生随机数以及如何利用这些随机数产生任意分布的随机变量、随机过程等。然后讨论了一些分析统计数据的方法和技术。如Bootstrap(自助法)、方差缩减技术等。接着讲述了如何利用统计模拟来判断所选的随机模型是否拟合实际的数据。最后介绍MCMC及一些最新发展的统计模拟技术和论题,如随机序列函数和随机子集函数的评估。本书在每章的最后还提供了不同难度的习题。本书可作为高等院校数学、统计学、科学计算、保险学、精算学等专业的教材,也可供工程技术人员和应用工作者参考。
一看有很多不懂的术语,顿时心生敬仰,后面写着可以供“工程技术人员”参考,很显然,我可以是这本书的读者。全书近300页,在今天剩下不多的时间内,很显然,我决定不去看这本书,哪怕是一个字。还是老师的教导,从简单开始。google到一个有趣的问题:用统计模拟计算圆周率pie值。Forcode提供了一种用excel求解pie的详细过程,然后有人用Mathematica计算出来了。Hujiangtang很仔细的阐述了什么是随机数?什么是蒙特卡罗模拟?为什么选择SAS做蒙特卡罗模拟?SAS怎么做出来这些,还可以做哪些哪些分布…… 其中引用这个用统计模拟计算pie的例子和上述用excel和mathematica的方法,可是就是不提供解决这个问题的SAS代码,在我看来,这是不可想象,我很仔细的找了半天,未果,于是我自己编了下列代码,用SAS来实现模拟pie值。
借用别人写的原理和图来说明一下,
原理很简单:
1)生成随机数——生成n个均匀落在正方形内的点;
2)对落在正方形内的n个点,数一数正好落在圆里面的点的个数,假设为k(另外n-k个点就落在圆外面的正方形区域内)。数据分析师培训
3)k/n就可以大致认为是圆的面积与正方形的面积之比,另其等于pai/4,就可以求出圆周率∏的估计值。n越大,算出来的pai值越精确
SAS实现代码:
%let num_s=10000;
data ex;
do i= 1 to &num_s.;
x=ranuni(0); y=ranuni(0);
area=sqrt(x**2+y**2);
output;
end;
run;
proc sort;
by area;
run;
data ex2;
set ex;
y1=.;y2=.;
num=_n_;
if area<=1 then y1=y ; else y2=y;
if area>1 and lag(area)<=1 then
do;
pie=(num*4)/&num_s.;
sas_pie=constant(‘pi’);
put pie= sas_pie=;
end;
run;
FILENAME file “c:\simulation.png”;
goptions reset=all hsize=8cm vsize=8cm noborder device=png gsfname=file;;
symbol1 v=dot color=’red’ height=0.3;
symbol2 v=dot color=’blue’ height=0.3;
proc gplot;
plot y1*x y2*x/overlay noaxis;
run;
quit;
模拟的点数为 100时pie=3;1000时,pie=3.068; 10000时, pie=3.1392;100000时pie=3.13543;1000000时,pie=3.141524,10000000时,pie=3.1418008。当然SAS也提供了pie的精确值供使用,使用函数constant就可以:sas_pie=constant(‘pi’); 值为:3.1415926536。上面的示例只是为了演示统计模拟的使用,其实SAS提供了很多种随机函数,几乎所有分布的随机函数供大家使用,这里就不详述了.CDA数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31