京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据中心基础设施是大数据战略成败的关键
为了成功实施大数据战略,企业数据中心基础设施的建设应当从围绕云计算,过渡到围绕大数据展开,这需要数据中心基础架构为大数据作出五大改变。
以下内容转自机房360:
为大数据选择新的硬件、存储和其它数据中心基础设施,这是IT专业人员们所面临的新挑战。
大数据是具备空前规模和形式的非结构化信息。它包括视频、图像,以及半结构化的数据(例如在Web上常见的电子邮件和文本)。随着基于传感器的移动Web监视设备和输出数据越来越多,可用的数据量将继续呈指数级增长。
推行大数据战略的压力往往来自高层,因为管理者相信,能有效运用数据的企业将比落后者具备更大优势。大数据战略需要数据中心基础架构作出的改变主要有五点:
一、支持大数据的硬件
大数据导致的存储需求量每年都将增长60%至80%,鉴于这种快速增长和当前的成本限制,IT采购者应选择在可扩展性和存储速度上最具成本效益的硬件。类似大型机的向上扩展体系结构重新兴起,因为它们能够经济高效地扩展,降低总体拥有成本。同样,在提升性能方面,固态硬盘(SSD)和固态卡带都比传统磁盘做得更好。
类似IBM Netezza和Oracle Exadata的硬件装置已被证实能有效兼顾可扩展性和性能。考虑采用硬件装置来支持关键大数据业务,但也应确认设备的架构能在未来提供快速性能升级。
二、围绕大数据选择存储
在成功的大数据策略下,企业可以将来自内部的高质量数据与Hadoop挖掘自多个云供应商的低质量数据进行整合。这也就改善了业务相关数据的质量,让分散在各地的数据能组织成为具备一致和及时性的大数据资源。
大数据正在改变中央数据仓储和松耦合数据集市的决策基础,后者的存储库规模要小得多,既可以替代中央数据仓库,也可以成为中央数据仓库的数据源。随着各地办事机构或者国际子公司的增加,中央管理层在业务线扩大的同时更需要高质量的数据来维持管控力度,避免权力的分散。
新的软件技术承担了繁重的存储相关处理工作。由Composite Software(刚刚被Cisco收购)和Denodo提供的数据虚拟化软件能自动发现数据源并提取数据充实全局元数据存储库,为整个组织提供跨越内部和外部的所有数据的公共数据库外观和体验。主数据管理软件通过创建公用主记录提高了数据质量,消除了费时的数据仓库检索。
企业Web外链需求加深了对公众和混合云的依赖。许多大型企业发现他们需要来自于多个云供应商的大数据,却不能指望供云应商会负责整合这些数据。企业只能从数据虚拟化供应商寻求工具来跨多个云整合大数据。
三、利用SSD的存储分层策略
存储成本很高,而且越快的存储也就越昂贵。最重要的是,大数据要求存储同时提供大容量和“大”性能。存储分层在存储资源池中提供多种成本/性能选项,从昂贵的高性能固态存储到传统的串行SCSI(SAS)磁盘存储,这些选项的组合降低了总拥有成本。在主内存和磁盘之间增加一个固态层将有助于将大数据任务的性能维持在高位,而且不会引起存储成本失控。
SSD的用量应遵从“90-10”的存储分层规则:成本和速度的最佳组合比例是:使用大约10%的SSD和90%的机械硬盘。这一策略让IT公司用仅增加10%成本的代价就能获得90%以上的性能提升。主内存和SSD的容量比例也遵从同样的规则。
由于SSD的性能价格比的提升速度超过传统磁盘(容量提升,价格降低),预计在不久的将来传统磁盘和SSD的配置比例会变为遵循80-20的规则。
IBM BLU Acceleration这类最新的纵列和内存数据库设施能利用SSD获得远超传统磁盘的性能,它们的设计能够有效发挥SSD这类“扁平化磁盘”的优势。
四、大数据分析和报告能力
虽然嵌入式分析工具已经可以利用报告和自动优化功能改善业务流程,但大数据再次改变了分析规则。例如,和传统上对单个客户进行主要行为分析洞察相比,大数据战略能为每个客户创建一个迭代和洞察分析线程,让公司能跟踪客户并更好地维持与所有客户的长期关系。
典型的大数据分析从业人员被称为数据科学家,和常规的IT主管不同,他们更可能同时担任CMO(营销总监)。然而,IT专业人员必须明白他们公司的大数据策略对数据科学家的工作产生的影响。
这意味着需要在自动化的报告和嵌入分析之外人工添加第三方审议内容:专设和松散耦合分析。支持专设查询的分析和统计工具是必要的软件前提。许多传统IT供应商以及云供应商——如IBM、Cognos和Birst——正在扩充这些功能。
五、企业中的Hadoop
Hadoop为数据密集型应用提供“紧贴着”MapReduce文件系统处理程序框架的分布式文件系统。此文件系统支持针对富文本数据的并行事务扩展,例如社交媒体数据。
许多IT公司通过在企业内创建自己的Hadoop版本来解决从Web获取Hadoop数据源的问题。然而,缺乏专业知识是一种挑战:精通这种发展中的Web数据管理框架的专业和艺术的IT管理人员犹如凤毛麟角。
组织开发他们自己的数据管理工具时应该留意,如IBM、Oracle和EMC的这些主要供应商,往往既提供专有产品用于访问Hadoop数据,也可进行定制开发,让IT公司不需要专门的数据归纳措施就能访问需要的数据。如果您决定搭建自己的数据平台,供应商也提供整合服务,使Hadoop更贴合现有IT资源来高效运作。
每个公司围绕大数据的相关决策都会有所不同。请记住,随着围绕大数据的技术演变,大数据战略也应当及时调整,与时俱进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16