京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2016机器数据分析五大趋势预测
2015即将过去,回顾这一年的技术热点,我们发现在炒糊了的大数据、物联网、云计算、DevOps开发运维之外,机器数据分析已经异军突起,有望成为2016年大数据市场商业价值最大,增长最快的热点。
据市场分析数据,2019年大数据市场规模将高达500亿美元,而机器数据分析(Machine Data Analytics将是增长最快的大数据技术),年符合增长率高达1000%。
在大数据时代,软件不仅仅改变并驱动企业业务流程,同时还是企业整个业务模型的基础,而实时管理、监控和维护这些不断增长的应用是企业面临的最严峻的挑战,这也是机器数据分析市场如此火爆的原因所在。
2016年,机器数据分析市场将呈现以下五大趋势:
一、DevOps工具将日趋成熟
没有人再怀疑云计算在企业市场将风卷残云般成为主流平台,大幅提高企业业务灵活性和竞争力。云计算的普及意味着越来越多的企业需要新的工具来打破开发团队和运维团队之间隔膜,让企业技术部门持续规模创新的速度能够跟上企业业务发展速度。越来越多的企业需要借助DevOps完成应用开发工作,而传统的监控工具显然无法胜任。
2016年,DevOps领域将出现新一代基于云计算的日志和机器数据分析服务,并进一步整合预测算法。DevOps工具(例如服务器容器和基础设施数据)之间也将能无缝集成,大幅改进持续集成和持续部署流程。
二、CISO首席信息安全官和安全运营团队将在系统智能上投入更多预算
过去几年,企业已经认识到大数据在业务决策上的商业价值,如今随着机器学习等技术的成熟,在系统基础设施层面部署大数据分析对企业来说同样意义重大。
对于安全团队来说,机器数据分析将大大提高对系统和用户异常行为、威胁侦测的响应速度,不仅仅能大大缩短MTTI(平均介入时间)和MTTR(平均恢复时间),而且将促使信息安全主管们重新思考企业的信息安全架构。
企业的信息安全主管们将加强与DevOps团队的协作,通过整合机器分析,在新的企业应用基础架构中嵌入安全功能。
三、日志管理将是IT运维和客户支持团队的重大机遇
通过日志分析来监测、管理采集用户和应用信息以及基础架构日志将是应对云计算基础架构复杂性的完美方案。这个领域的供应商已经开始整合,新的厂商也不断涌入日志分析市场。越来越多的企业将重视日志分析在应用开发、信息安全和IT运维方面的重要价值,而日志分析也将成为“分析民主化”的排头兵。
四、“超级架构”的崛起
今天的云计算架构可以通过虚拟服务器软件编织起数以千计的微处理器,这让摩尔定律失去了意义。因此,今天的创新型CTO们已经开始拜托传统数据中心的局限,大胆推动新的基于软件的“超级架构”,驾驭私有云和公有云中的庞大计算资源。
五、商业智能的价值从后知后觉转向实时分析
从慢数据向实时的快数据的转型是机器分析引发的商业智能变革。通过实施日志数据分析,企业能更快地了解运营和顾客数据,从而实现24/7的持续创新和竞争力提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28