京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代哪7类人最赚钱
一个划时代新的技术和思维的兴起,它会驱动几乎所有的产业变革,大数据更是如此,通过几年的观察和最近大量的基金公司朋友的接触,我从赚钱的角度对这个领域进行了分析。
他们通过炒作概念在股票市场活动巨额回报。这些人分析发展趋势,把握大局,他们关心产业政策,关心市场空间,少关心具体运营能力和市场竞争格局。据了解,大数据概念股以 2010 年 6 月 1 日为原始起点,截至 2015 年 11 月 10 日,大数据概念指数变化区间在 [95%,1860%],一直以来强于上证指数,相对上证指数有很高的收益,这个相对收益是惊人的,最高时超额收益超过 15 倍。即使从 2012 年底开始的创业板指数,也跑弱于大数据概念指数,足见大数据概念相关个股具有较好的回报。相对高点时,大数据概念指数强于创业板指数 10 倍以上;从低点起来,大数据指数涨幅到最高点超过 18 倍,如此高的涨幅让许多人羡慕不已,相关个股精彩纷呈。投资这类的企业如拓而思,用友,东方国信、启明星辰、绿盟科技、恒生电子。
他们用最短的时间,研究股票,投资,获益,资本效率极高,一些高端的股票和投资者,他们会专门针对行业要求做培训,走访企业家走访客户。短时间内就可以赚的钵满盘满。
他们从最开始就投资有最高价值的大数据的企业,并从中发现商机,过去的几年只是一个开始,可以预见大数据行业未来十年仍然会是创业公司的机遇地。他们眼光超前,投资的估值不断高升;他们跟进投资,然后迅速推动企业发展,然后期待包装上市。这类企业如:集奥聚合、国双科技、华院数云、品友互动、易赞普、百分点科技、永洪科技、国云数据、数据堂、数海科技等。投资资本如:宽带资本、红杉资本、IDG、创新工场、深圳创投、清科、软银中国,今日资本等。
虽然有些企业死了,但是大部分还在受到资本追捧,创业者最苦逼,但是在资本催生产业变革的年代他们获益也是最多的,现在大数据企业的估值从几年前的几个亿到几十亿是翻了近十倍;企业老板的身价也是翻了近十倍,这类人笔者认识很多,因为比较涉密不一一列举。
行业内专家教授参加各种会议各种讲课,培训机构,在线教育,还有专家学者备受亲来。笔者成立的大数据培训联盟、数据共享联盟等微信群,经常会收到邀请做讲课深有体会。
媒体版面改版,自媒体增多,受到关注的大数据自媒体如:大数据邦、大数据文摘、大数据参考、腾讯大数据、CSDN 大数据、36 大数据等。
那就是免费数据,收费 api 的这些数据开放平台们;已经成功的如: Salesforce 23 亿美元的年收入中超过的一半的收入是通过 API 产生的。Google 每天通过 API 处理 50 亿笔交易,Twitter 每天通过 API 处理 130 亿笔交易,亚马逊每天通过 API 处理万亿笔交易,还没有成功的但是已经获得很好的发展的国内如:BAT、运营商、政府的数据开放平台,高德数据开放平台,数据交易市场 (数海科技、数据堂、聚合数据、九次方、美林数据等)。
数据之美在于流通,在于推动业务发展,在于提高用户体验,在于预测业务发展做好企业战略规划,在于集群众智慧、激活人员动力。利用数据推动商业变革才刚刚开始,做企业赚钱才是硬道理,先活下来,因为企业的大数据路还很长,变数也很多。盲目跟风,不可取!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10