
大数据帮助零售商避免沦为“展示厅”
对实体店零售商来说挣钱难度与日俱增。经过亚马逊等电商二十多年对传统零售型经济模式的冲击,智能手机的普及,数字化消费者的诞生以及次日交割⑴的繁荣,这一切都似乎使传统零售商的未来变得扑朔迷离。
我用“似乎”一词是经过深思熟虑的,因为我相信零售商将通过学会综合运用大数据分析、多渠道数据和持续(自我)更新,重回昔日的繁荣。
这些高风险的议题是美国零售联合会年会考虑的头等大事。该会议于一月份在纽约召开,讨论了大数据和消费者不断变化的期望怎样和云计算、数据分析、社会化商业以及手机交叉,最终从根本上改变商业——这对于零售商而言意义重大。
就个人而言,我对零售商的未来感到兴奋不已。零售商们通过应用高科技能促进对消费者的了解,并提供一切他们想要的。最终,整个业界就能实现将每个消费者区别对待的长期目标,而不是把他们聚集在分区混乱的市场里浪费时间。
作为数据专家,我很乐意见到大数据分析被零售商应用。这项技术是揭开人类消费行为奥秘和了解消费者一切需求的关键因素。
如今,零售商在许多时候都有大把机会去了解他们的顾客群体,以及那群人常去的市场。移动计算应用在用户允许的情况下随时都能让商家获取消费信息。忠诚计划⑵能授权他们访问消费者的历史消费记录。把这两个因素结合起来,无论是实体店还是线上店铺,你都能立刻与你的顾客建立联系,满足他们的需求。
大数据分析能辅助预测消费者的需求。通过研究个人消费习惯并将消费模式与他们身边所发生的事情联系起来,零售商就可以预测消费者的行为。受此启发,零售商能更好地掌握消费者不断变化的需求,他们不仅对此抱有希望,甚至尝试改变消费者的消费行为。
我的公司也用大数据分析天气对消费者个人消费行为的影响。我们将销售数据和美国国家气象局的数据结合分析,这样零售商就能利用忠诚计划的数据,以可预测的方式来确定消费者对天气的反应。
社交媒体为零售商提供了一个促进对消费者了解的良机。商铺能分析顾客们的个人账务。通过匹配不同时间段的消费模式和消费者所属人群,商家能调整他们的营销策略——或许会使用数字化大屏幕对某些特定消费者显示(不同的)商品名称和价格。
最近,大型零售商纷纷制定线上商铺作为实体商铺的补充,但这两种模式几乎都没什么联系。这将使零售商们错失良机。通过多渠道市场技术整合实体和虚拟世界,大数据分析技术变得更加势不可挡。
为了给消费者提供更加持久、方便、个性化和相关的体验,协调所有消费者能接触到的因素就变得尤为重要,包括:促销、商铺、网站、客户服务中心、广告、移动应用和社交网络互动。
事实上,这个途径就是对抗“展示室现象⑶”挑战的关键。
越来越多的消费者选择在实体店体验商品,然后用手机或者平板电脑在网上以一个更优惠的价格购买。我建议零售商不要视手机和平板为眼中钉,而将它们视为自己商铺(业务)的扩展。
通过消费记录,零售商能了解消费者在该商铺的购买习惯,然后利用(线上)应用或(实体店)推销员来吸引顾客。无论通过何种方式,他们留住顾客的几率都将大大高于被网上打折商铺抢走顾客的几率。
我们正处于多渠道市场的早期,但我坚信通过利用大数据分析,移动计算和社交网络,零售商将找到无数成功留住顾客的方法。革命性的实验是非常重要的。尝试一些新东西;不论得失;通过学习;再次尝试。
砖家们乐此不疲地宣称实体店已死,但美国90%以上的零售交易还是以传统的方式进行着,零售商们不断自我更新。
我很荣幸与一批最有创造力的零售商合作,因为他们正在改变21世纪的购物体验。他们明白必须不断重塑自我,才能整合线上线下平台。最棒的零售商一定会成功。而最终的赢家还是消费者,他们的一切需求都将得到满足,以一个实惠的价格。
译注:
⑴one-day delivery(次日交割):合约的交割日期为下一个交易日时。
⑵loyalty programs(忠诚计划):是公司基于客户对公司特定产品或服务累积购买的基础上对客户所提供的激励。
⑶phenomenon of “showrooming”(展示室现象):电商的售价通常比实体店便宜,因此,消费者去实体店体验产品,然后回家在电商网站上下单,这种现象已经司空见惯,被称之为展示室现象。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23