
21世纪最热门职业,非“大数据君”莫属
根据“谷歌趋势”,在2011年的时候,“大数据”还很少被用作搜索词,但是从2012年开始到现在,你几乎能听到各行各业的人都在谈论“大数据”。
这是一个增长非常迅速的领域,而且催生出了很多的工作机会。麦肯锡公司的一份报告预计,到2018年仅美国在“具备深入分析能力”的大数据专业人才方面的缺口就在14万人到18万人之间。据New Vantage Partners公司对《财富》美国500强公司的调查显示,85%的500强企业要么已经推出了大数据项目,要么正打算推出。未来几年他们花在数据分析上的投资将平均上涨36%。难怪《哈佛商业评论》的一篇文章里将数据分析称作“21世纪最热门的职业。”
对有志进入“大数据”职业领域的人来说,首先要搞清楚的一件事就是它的职业门槛有哪些。这个问题看似简单,实则复杂。大数据领域的发展非常迅速,而且各个公司的招聘标准也是五花八门。比如有些雇主可能要求你掌握某种特定的编程语言,但有些公司就根本没有这种要求。在这一点上,中美两国公司对大数据人才的期望体现出了一些不同的特点。
我们先来看国内的,在网上搜索“数据分析师”这个职位,百度显示的最新招聘信息约有近9000条。以其中一家“国内知名手机阅读公司”的招聘要求为例,应聘者需要满足:
· 三年以上相关工作经历,至少有1-2个成功的中型项目经验;
· 优秀的商业分析报告撰写能力,有及时发现和分析其中隐含问题的敏锐性;
· 至少掌握一种数据分析工具(R/SAS/SPSS/Matlab),实现优化算法;
· 至少熟悉一种数据库,熟练运用SQL,有丰富的数据分析、挖掘、清洗和建模经验;
· 熟练使用JAVA/C++/Python/PHP 构建中等规模的数据分析系统, 有丰富的脚本处理数据经验。
再看看百度自家招聘数据分析师的职位要求:
· 统计,数学,数据挖掘等专业;
· 互联网行业分析领域两年以上工作经验者优先;
· 扎实的机器学习/NLP理论和技术基础,能熟练使用SPSS/SAS/MATLAB等工具;
· 优秀的口头和书面表达能力;
· 具备Unix/Linux环境工作能力,能使用shell/python等脚本语言优先;
· 优秀的分析问题和解决问题的能力,对解决具有挑战性问题充满激情;
· 良好的逻辑思维能力,学习能力强。
综合其他一些公司的相关职位招聘要求,大体上国内公司最看重的素质归纳起来有:能熟练使用数据分析工具(掌握SPSS/SAS/MATLAB是基本技能,有些公司会增加特定要求);有2-3年的工作经验;对数字敏感、分析能力、表达能力强。这些素质对从事数据分析来说都很重要。但问题是,大数据兴起也就是近两年发生的事,人才市场上哪里能迅速培养出这么多符合期望的候选人?
美国一些公司已认识到这一点,它们采取了更现实的做法:一方面,和大学合作,长期培养大数据专业人才以及开展相关研究,比如英特尔就和数据学专业排名靠前的麻省理工学院合作建立了大数据科学技术中心;IBM则投入1亿美元在中国大学推行大数据教育,目前已和北京理工大学、复旦大学、北京大学等7所大学达成合作。
另一方面,企业界已开始转换思路,不再寄望于找到某位全能型的天才来一手搞定所有的数据分析工作,而是吸引更多各有所长的人来组成一个能创造性解决问题的团队。有些甚至不需要有统计等特定专业背景。
所以对于想进入这个行业的人来说,别灰心,即使非计算机或数学科班出身,你依然有机会。美国大数据行业龙头FICO公司的首席分析官安德鲁•詹宁思就曾向《财富》表示:“如果你不是一个纯粹搞数学的人,或者不是一个专业的编程人员,那也没关系,因为你可以和那样的人在同一支团队里工作。除了量化分析方面以外,我们还非常需要具有求知和好奇天性的人,以及能够指出业务上的问题并且能与客户沟通的人。”
最后,我们来看一下这个行业的回报怎么样。由于目前大数据人才依然处于需求大于供给的状态,在美国,一位资深数据科学家在大型社交媒体企业当中可以拿到17.5万美元的年薪,而相关自由职业者的时薪可达200美元。
除此之外,一些创业者正扎根于大数据开创属于自己的事业。“大数据创业”已成为目前非常热门的一个趋势。今年5月麻省理工学院斯隆管理学院举办的“技术创新与创业论坛”上,“技术创新与大数据创业”就是一个重要的讨论单元。在美国,《财富》刚报道过的一家公司是Flatiron Health,两位年仅28岁的创始人正试图利用大数据分析来给出治愈癌症的最佳方法。这家公司刚刚获得了谷歌1亿多美元的风险投资。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29