京公网安备 11010802034615号
经营许可证编号:京B2-20210330
揭露大数据五大误区
在如此多关于大数据的炒作下,IT管理者很难知道该如何挖掘大数据的潜力。Gartner指出关于大数据的五大误区,以帮助IT管理者制定他们的信息基础设施战略。
Gartner研究总监Alexander Linden表示:“大数据提供了巨大的机会,但也带来了更大的挑战。海量的数据并没有解决数据固有的问题。IT管理者需要破除各种炒作,根据已知的事实和业务驱动的结果指导行动。”
人们对于大数据技术和服务的兴趣达到了前所未有的高度,有73%的受访企业已经投资或者计划投资大数据。但是大多数企业机构仍然在采用大数据的初期阶段,只有13%的受访者已经部署了大数据解决方案(见图1)。
图1、2013年和2014年大数据采用的阶段
注释:Gartner向每位受访者提问,“以下哪5个阶段可以最好地描述你企业机构采用大数据的阶段?”
2014年n = 302,2013年n = 720。来源:Gartner(2014年9月)
企业结构面临最大的挑战是确定如何从大数据中获取价值,以及确定应该从哪里开始。许多企业机构卡在试点阶段,因为他们没有将技术与业务流程或者具体的使用实例联系起来。
IT管理者认为,目前企业管理如此多的数据使得单个的数据质量问题变得微不足道,因为“大数据法则”。这个观点认为,单个数据质量缺陷并不影响整个数据分析的结果,因为每个缺陷只是企业机构内海量数据非常小的一部分。
Gartner副总裁Ted Friedman认为:“事实上,尽管单个缺陷对于整个数据集的影响要比数据量少的时候小一些,但是因为数据更多了所有缺陷也就更多了。因此,糟糕的数据质量对于整个数据集的影响还是一样的。除此之外企业机构在大数据背景下使用的大多数数据都是来自于外部的,或者是未知结构和未知来源的。这意味着出现数据质量问题的可能性要比以前更高,因此数据质量实际上在大数据背景下变得更为重要了。”
一般观点认为,大数据技术——尤其是通过在用模式方法处理信息的潜力——将使得企业机构要使用多种数据模型来读取相同的数据源。很多人相信这种灵活性将让终端用户确定如何按需地将各种数据集进行转译。他们认为,这也将提供满足单个用户需求的数据访问。
在现实中,大多数信息用户重度依赖于“在写模式”,在这种场景下数据被描述、内容被预先描述,因此关于数据完整性以及与场景的相关性已经达成了统一。
很多信息管理的领导者认为,构建一个数据仓库是消耗时间且没有意义的,因为高级分析使用新型的数据而不仅仅是数据仓库。
现实是,很多高级分析项目在分析过程中使用的正是数据仓库。在其他一些情况下,信息管理人必须提炼作为大数据一部分的新数据类型,使其适合于分析。他们需要确定哪些数据是相关的,如何聚合这些数据,以及数据质量的等级,而且这种数据提炼可能是发生在很多地方的,不仅仅是数据库。
很多厂商将数据湖定义为用于分析各种来源的原始格式数据的企业数据管理平台。
现实是,厂商将数据湖定位为数据仓库的替代品或者作为客户分析技术设施关键要素是容易引发误导的。数据湖的基础技术缺乏已有数据仓库技术功能特性的成熟型和广度。Gartner研究总监Nick Heudecker表示:“数据仓库已经具有支持整个组织上下各种用户的能力。信息管理者没必要等着数据湖迎头赶上。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16