京公网安备 11010802034615号
经营许可证编号:京B2-20210330
维基社区的成员构成依然是现实世界权力构成的体现。“人人可编辑的自由百科全书”并未兑现去中心化的平等承诺。维基百科并不比其它百科全书更不可靠,但也并没有更可靠。
维基百科(wikipedia)常被视作技术与网络改变世界的例证。它和Facebook、Twitter、YouTube一起被奉为大数据时代Web 2.0技术之“用户创造内容”模式的完美展现。
然而这曾被誉为“人人可编辑的自由百科全书”的大热网站,近年来呈现出无可挽回的颓势。早年间维基的词条数目曾有“指数级增长”,但如今持续减缓。而活跃编辑者——即每月登录并进行至少5次编辑的用户——大幅减少对维基百科和维基社区更是筋骨之伤。相比2007年最高峰,目前所有语言版本维基百科的活跃编辑者减少了20%,英文版更是减少了40%。2010年以来,维基媒体基金会每年的年度计划中都把“提升编辑参与度”列为重点,但到目前为止,这方面的努力只能说是屡败屡战。
维基百科最初的成功更像是一个意外,而非精心筹划的结果
众所周知,2006至2007年是维基百科发展最快的时期,也是整个社交媒体和Web 2.0兴起并广受吹捧的时期。在《维基经济学》一书中,2006年被描绘成社交媒体和Web 2.0全面战胜传统的Web 1.0模式并重塑互联网的一年。作者预言,去中心化的协作将彻底取代传统的、集中的组织和生产模式,并全面改变人类在科研、文化、教育等领域的活动。
如今,在基本架构和网络化协作的逻辑并未改变的情况下,维基百科2007年之后增长势头却一路下滑。Web 2.0何以失灵了?
其实,早在“Web 2.0”被提出时,就有人质疑这一概念只是个噱头。因为对照被追封为Web 1.0时代的互联网,Web 2.0并没有技术方面的根本革新。一些被拉入Web 2.0旗下的所谓创新,诸如反馈/互动机制等等,在Web 1.0时代也已存在。Web 2.0与Web1.0之间很难找到清晰的界限。
其次,无论是“协作式生产”还是建立“人类所有知识库”的尝试,都早在当代之前即已存在。“协作式生产”甚至并非人类独有技能。在历史学者们眼中,许多初看似乎新奇的想法往往比我们认为的要古老得多。从亚历山大图书馆到《永乐大典》,从狄德罗的《百科全书》到英国科幻小说家赫伯特 乔治 威尔斯在1930年代设想的利用最新科技打造“永久的世界百科全书”——集结世间所有知识的梦想和尝试从未间断。而如此规模的工作自然也都是以协作的方式完成的。比如狄德罗《百科全书》的编辑就来自不同社会阶层,有着不同的职业、性别和宗教信仰,有医生、律师、军官,甚至政府官员。
抛开Web 2.0的标签,我们就会发现那些网站的兴起和衰落都是诸多因素合力的结果。软硬件及部署成本的下降,世纪初互联网泡沫破灭之后随着市场信心逐步恢复的投资复苏,移动设备的兴起以及各类简单易用的分享软件的出现,都是社交网络服务的发展所必不可少的。具体到维基百科,除了上述大环境,还有来自创始人吉米 威尔士早期创业的资金、业已存在的维基软件、乃至之前Nupedia项目的失败,都为维基百科的建立和发展提供了必需的条件。
事实上,维基百科最初的成功更像是一个意外,而非精心筹划的结果。但当人们事后将它和同时期兴起的许多互联网服务并置一处考察时,去中心化的协作作为它们共有的“创新”模式凸现出来了,而其他同样重要的因素却因过于“传统”而被忽视。Web 2.0像是一面高高飘扬的大旗,指引着人们在回顾某个时期某些网站发展时关注宏大叙事,却忽视了这些网站各自不同的个体发展经历,以及那些看似平庸无趣但实际发挥作用的推动力量。
去中心化与平等参与只是传说
凭借大数据时代的技术,维基百科无疑能比历史上所有百科项目吸纳更广泛的参与者。只是,这种“广泛”与人们理想中的高度协作、无论背景人人平等参与、使用者即编辑者的愿景相差多少呢?
以英文版维基百科为例,虽然注册用户数量庞大,但实际进行过编辑的用户不足2%,三分之一的内容来自于不到0.05%的贡献者。而真正的核心用户数量更少。目前“高度活跃编辑者”——指最近一个月进行过至少100次编辑的用户——数量约为3000人,这些人被认为才是真正的维基社区的构成者。而 “活跃编辑者”和“高度活跃编辑者”合计仅占用户总数的0.02%~0.03%。
此外,有人认为还存在一个更小的内部核心圈,由包括创始人吉米 威尔士在内的数百人构成。这些人在现实中彼此相识,会一起参加线下活动。据称,维基百科上大部分的新词条都是由这个小规模的核心圈子建立的。
然而,即便是活跃用户对维基词条的编辑,也远非“所有人参与编辑所有内容”的完全去中心化形式。的确,Web 2.0模式所代表的信息技术能让人们摆脱现实中地理、国籍等诸多限制,在虚拟空间按照自己的兴趣重新组合。这反映在维基社区便是按照内容主题进一步细分而成的更小群组,这些群组专注于各自的兴趣和题目,形成一个个小圈子,彼此之间却极少沟通和合作。一些生僻冷门的内容甚至只有几个人参与编写。这样的词条当然也可作参考,但这在多大程度上符合我们对于百科全书的理解?又能在多大程度上符合维基百科所主张的客观中立的标准?
可见,所谓人人“皆可”参与的机会和理念并没有带来人人“皆已”参与的结果。这或许并非维基协作模式本身的问题,而是因为所有技术都无法摆脱现实因素的影响。
比方说,作为一个在线协作项目,维基百科的编辑者首先需要有一台连接到互联网的电脑,并具备一定的电脑使用技能。这听起来像是废话。但在全球范围内,因为经济、政治、文化、教育等因素导致的技术普及的不均衡是实际存在的,而由这种不均衡和其他各种原因所造成的某些群体话语的缺席对于维基百科所推崇的广泛参与、平等协作、客观中立无疑是一个阻碍。
尽管目前维基百科有287个语言版本,但英文版的规模、用户数量和完善程度都远超其他任何一种语言版本,许多母语非英语的人也以英文版维基百科为首选参考。这本身便是现实世界中政治经济和文化实力对比的体现。据观察,在英文版维基百科上,主要编辑者中绝大部分是男性、美国人、精通电脑、年龄在 30岁上下。而最新的调查则显示,在英文版维基百科的所有编辑者中,男性占 84%~91%;20%的编辑者来自美国,编辑人数最多的十个国家中,除印度(占3%)外都是欧洲和北美国家;年龄方面,近60%的编辑者介于17至40 岁之间。
维基百科的贡献者乐于分享,相信信息应当自由流通,并更愿意在网络上展现真实自我。然而分享主义者是否就比独享主义者更有知识和发言权?同样,男性相对于女性、欧美人相对于其他地区的人、“电脑专家”相对于“电脑文盲”,这些维基社区的参与者背景对于维基百科内容的可靠性和共识性意味着什么?
以上这些并不是要否定维基百科的成就。如前所述,维基社区的成员构成是现实世界权力构成的体现,而维基百科编辑者的背景分布也被认为与当今学术界的现状相似。换言之,维基百科并不比其他百科全书更不可靠,但也并没有更可靠。这本身或许并不是一个问题,但却让我们看到维基社区所梦想和宣扬的理想以及对所谓Web 2.0的创新与革命力量的期待确实过于乐观和简单化了。
在智能移动设备上如何编辑百科?
维基百科陷入发展瓶颈的复杂原因中还有不容忽视的一点:在线协作所依赖的技术环境在这些年里也发生了变化。
维基百科创立的2001年,计算机已在发达国家迅速普及,这无疑有助于普通用户,尤其是主要编辑群体的参与。而就在维基百科增长巅峰的2007 年,智能移动设备革命开始了。这对维基百科来说却并非好事。移动用户的需求、使用习惯、关注点可能都与桌面设备用户不尽相同。同样是Web 2.0时代的引领者,Facebook和Twitter在移动革命中的获益与维基百科形成鲜明对比。智能手机让人们可以随时随地阅读和发布碎片式信息,但维基百科所提供的大篇幅内容和所需的编辑工作则显然是另一码事。
如今,维基媒体基金会正努力赶上智能移动平台的发展脚步。不过,改善用户在手机或平板设备上的体验或许还不是最具挑战性的,接下来,他们要如何吸引用户在可穿戴设备如眼镜和手表上阅读和编辑百科词条呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03