
大数据公司该如何从大数据中获取价值?
大数据是近些年来一直被热炒的话题,而它也的确对未来发展有着颠覆革新的力量。然而,如何从大数据上获取价值,却是一个很让人头疼的问题。对于这个问题,我们还需深入思考。
在人们意料之中,大数据产业在今天上升到了很高的地位!
8月6日,工信部的消息显示,大数据产业十三五规划编制工作已正式启动,日前已在工信部信息化和软件服务业司组织下,召开了规划编制第一次工作会议,成立了规划编制小组,讨论了规划编制工作方案、规划草案、任务分工、近期工作安排等。
大数据产业的未来,越来越值得人们期待。但如何从大数据上获取价值,却是一个很让人头疼的问题。
就在前几天,笔者读到一段很“不合潮流”的话。在一次演讲中,华为轮值CEO徐直军表示:“华为不是一个数据公司,不经营数据,永远不从数据上获取价值。而是与更多和合作伙伴一起来保护我们客户的数据,使客户数据更安全,解决客户面向未来的问题,使客户真正实现信息化!”
对于他的说法,我是持怀疑态度的,甚至感到他说的很不严谨。如果从文字上细细琢磨的话,对客户数据的保护其实也是一种对大数据的利用,保护大数据带来的价值,也是大数据的变现。大数据时代的安全防护,难道不也是一种产业分支吗?在别人利用客户大数据发广告的时候,你保护了这些大数据,除非你是免费的,否则怎么会没有价值产生?即便是360的免费杀毒,也在别的地方产生价值了。华为的大数据,又怎么能独善其身?
很显然,没有人可以游离于大数据的价值之外。不再搞一些文字方面的纠缠了,其实我举徐直军这段话的目的,无非是想说明这一点:“大数据,不经意间就会产生价值。”于是,再回到一开始那个问题:“大数据公司该如何从大数据上获取价值?”
对于这个问题,一直以来我个人的观点是这样的:“第一,大数据必须要利用,否则就是浪费,同时弃之不用也对我们的发展不利。第二,大数据的利用要遵循三个原则,一是不能以影响用户体验为代价,二是不要采取非法手段去牟利,三是应该确保大数据的利用是在绝对安全的前提之下,或者最大限度的安全之下。第三,大数据要有公众监督,不能暗箱操作,要有透明性。”
我之所以持有这样的观点,是因为这几个问题是目前外界对大数据比较关注但也很容易被忽视的问题。目前,人们纠结于利用或不利用大数据,却忽略了怎么用,怎么好好的用,怎么用好。虽然目前大数据还没有做到真正的商业化,但之前一些关于大数据的“警报”却必须引起我们的重视,比如社保信息泄露,比如某些电商的信息泄露等等。
对于我的问题,以及这几个观点,笔者向大数据解决方案提供商成都数之联科技CEO周涛请教。周涛是这样回答我的。
关于大数据本身,他认为,“大数据”是“数据化”趋势下的必然产物。数据化最核心的理念是:“一切都被记录,一切都被数字化”。
对于这个观点,我是赞同的,因为这就是大数据的本质。“天空没有留下翅膀的痕迹,但我已经飞过”,这只是诗歌,不是现实。
对于如何从大数据上获取价值,周涛认为:“对此,我们要做得是1,解决‘信息过载’的问题,即通过自动化、规模化的方式为每一个用户找到他感兴趣或者需要的信息;2、从非结构化的数据中挖掘出价值,甚至在尽可能少损失有价值信息的前提下将其结构化; 3、在数据隐私和安全得以保障的前提下,从关联的数据中挖掘出‘一加一远大于二’的价值。”
周涛的观点,应该是从企业角度来说的。按我理解,应该是这样三个应用步骤:“一,如何提取大数据;二,如何优化大数据;三,如何合理利用大数据。”说的虽然简单,但很清晰。尤其是“一加一远大于二”的说法,很有启发性。
不过,对此我还有几点疑问:“第一,提取大数据的方法有了,但大数据的主人是否愿意让企业提取呢?比如,我购买商品,留下了我的信息、地址甚至电话,这些我是不愿意让别人提取的。第二,大数据优化的过程中,有价值的信息留下了,但那些在商家眼里无价值的信息怎么处理?一旦所谓无价值的信息被遗弃,最终落入别有用心的人手里,那会怎么样呢?”同时,我还有一个宽泛一点的问题,大数据的安全该如何保证呢?
真正的物联网时代还没有到来,但已经近在咫尺,大数据公司该如何从大数据上获取价值,这是个必须要思考的问题。对于我的问题和忧虑,我很希望周涛或者是其他的行业人士能给我一个解答。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07