
李彦宏:大数据可以对中医证实或证伪
昨天上午,在世界互联网大会“互联网创新与可持续发展”论坛上,百度公司创始人、董事长兼CEO李彦宏发表主旨演讲,分享了他对大数据、人工智能等前沿技术话题的洞察。
尝试证实或证伪中医理论
在演讲中,李彦宏谈到了大数据给医疗带来的机会,他提出,其实可以用大数据的方法进行证实或者证伪中医相关理论。李彦宏谈到,由于过去十几年的积累,人们已经可以看到在大数据、人工智能方面有很多新的机会出现。这些机会有些可能在一般人的心目当中和互联网没有太大的关系,但是在他看来,诸如大数据和医疗健康就有很多方面可以结合。
在李彦宏看来,中医理论其实是在讲养生的方法,比如著名的《黄帝内经》,但《黄帝内经》已有两千多年历史,其中哪些理论是对的,哪些是错的,都可以通过技术手段来证实或证伪。在演讲中,李彦宏提到,安徽有一位老人每日在家按摩两小时进行养生保健,颇为长寿。他认为,类似这种零星的个体经验并不能够认定为规律,但如果在全国找到几千个、几万个同样的案例,用大数据的方式进行归类分析,就能够判断个体的经验是否构成规律。
关注癌症治疗及基因测序
对于互联网与医疗的结合,李彦宏也提到了除中医外的其他机会,比如基因测序。“大多数的疾病都是因为基因和后天环境导致的,那么什么样的基因导致什么样的疾病?大数据也可以帮忙。”李彦宏在演讲中指出。
今年以来,李彦宏已经不止一次在公开场合表达自己对于生命科学、癌症治疗以及基因测序的高度关注,并多次表达互联网+以及人工智能和大数据等技术对于“治未病”、证实证伪医学理论的畅想。在今年与复旦大学师生的对话中,李彦宏说:“绝大多数病跟遗传有关系,但我们不知道是什么基因导致了这个病,可能是很多基因的一个Combination,导致了这个病。26000个基因、各种各样的组合就需要我们的大数据,需要我们的人工智能来计算。”
呼吁企业家思考自己使命
据悉,李彦宏前不久还个人捐资3000万元,支持中国的食管癌研究。他说,长期以来,中国食管癌发病率高居世界首位,而且中国的食管癌都是所谓的食管鳞癌,与美国的食管腺癌不同,没法借鉴其他国家的研究成果,李彦宏认为,“这是我们中国人的职责”。食管癌研究项目利用大数据和人工智能技术相结合,对大量食管鳞癌患者的信息加以分析进行基因测定,更有针对性地进行药物研究,推进癌症预防与治疗的进一步发展。
“这不是公司的业务,是中国人的职责。”李彦宏说,“这个项目短期内不会有任何商业回报,所以需要用企业家个人的资金去进行研究、进行突破、进行创新。”为此,他还呼吁企业家们能够利用自己积累的资金去做一些有意思的、创新的事情,“期望我们每一个企业家都能站在时代的路口上,认真思考自己所肩负的使命,为自己的企业也为自己的人生做出更精彩的业绩”。
人工智能将深刻改变人类
而就在大会开幕当天,李彦宏还向国家领导人现场讲解了百度无人驾驶车的技术储备、路测实况、行业突破等内容。昨天的主旨演讲,李彦宏也以无人车为例,阐述了人工智能技术改变人们生活的巨大空间,他说,随着计算机计算能力、成本的下降,人工智能迎来了新机遇。李彦宏认为,
人工智能有很多创新空间,不仅是无人驾驶汽车,人工智能未来对整个社会各方面都影响深远。“如果说过去的几百年工业化改变了人类,那么它主要的改变是代替了绝大多数的体力劳动;未来人工智能将会更加深刻地改变人类,它会代替绝大多数的简单、重复性的脑力劳动。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30