京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,如何精准狙击
信息化高速发展,促进数据类型繁多,每分钟都有大量数据产生。大数据在改变数据分析思维的同时,大数据应用方向逐步明晰,成为企业掘金新方向。
随着互联网技术的高速发展,云计算、物联网应用的日益丰富,大数据未来发展前景将更为广阔。7月23日,梅花网开放日带领你走近大数据,掀开面纱,精准狙击。
1、MIGO 大中华区数据应用顾问 戴家祥 演讲题目:探索新大陆 扔掉旧地图--大数据营销的革命新观点

通过建立NES模型,分为所谓的新客户,新会员,既有会员和沉睡会员。把所有的营收拆分成三个因子,有效顾客数、活跃度、客单。你关注的点并不在于营销预算怎么花,通过看这10指标,进而帮客户看整个局,会员生态是不是健康。
戴总谈到其实MIGO的概念是说,现在很多数据要看,我们就让机器做机器擅长的事情,人做人擅长的事情。以前网络没有那么兴盛的时候,如果你开一个卖场,可能花15分钟成一单,如果我们把时间拉到今年的3月8号早上10点,从早上10点开始到10点10分,这个10分钟,阿里巴巴的营业额相当于一线城市10家卖场的10天的总和。这是整个总揽、看整个时间轴的方式,另外有一个交叉比较的方式,去比较说到底我哪里做的好做的不好,投入交叉比较就可以清楚的知道,下次活动应该怎么去做。
2、TalkingData 业务拓展总监 宋显赫 演讲题目:《数据营销≠数字营销》

移动端很大的特点是单人单设备,针对到单用户,并不是PC或者电视的时代。移动端的数据是真真正正的可以线上线下打通的,我们服务嘀嘀打车的时候,你从哪儿到哪儿的经纬度信息可以抓到的,这是以前电脑不能做到的。
移动端的数据可以有效的体现个人的兴趣。在移动端的下载或活跃行为,可以体现人长期和短期之内的兴趣喜好,可以很明确的反应出你是什么样的人,这是移动端更有意思的地方,我们把移动端每一个设备对应到每个人本身。结合这样的标签移动端我们可以更好的刻画出一个用户,通过数据可以刻画出不同的纬度。
3、悠易互通 副总裁 刘顺,演讲题目: 程序化购买+ 中国数字营销新趋势

程序化购买有别于传统的用手工方式进行购买的方式,为什么说程序化购后面可以加一个"+"因为程序化购买发展势不可当,除了跟PC、移动端还有社区的资源有了合作之外,未来可以看到更多,比如数字电视资源也会介入进来,包括平面、户外LED屏都可以加入到程序化购买的大家庭当中来。让我们的程序化购买更丰富。
品牌的助力无非是三个方面,任何一个CMO都会面对这样一个问题,第一个是广度,第二个是交互的深度,第三个是效率,我们用跨屏这个词替代。主要是这三大方面,也许你的品牌知名度更高,也许你需要更多的交互,也许你的交互很好但是广度不够,程序化购买可以帮大家更好的完成这三个方面的东西。
4、剧星传媒CEO俞湘华,演讲题目:大数据激活内容营销

每个品牌都关注各种各样的热点,类似品牌跟进的也非常多,特别是微信火了以后,大家几乎可以判定有一个热点出来以后,大家都在等,会有哪些品牌跟进,最后这些热点会不会失控,热点出来之后怎么跟,你跟了之后你从中获取了什么,这是整个中国综艺节目的浮夸风带来的结果,背后的逻辑是中国的土豪广告主愿意买单,很多广告主我们可以看到,除了电视冠名还愿意做一些网络,做一些互联网的冠名,电视和互联网的,基于同样的内容在不同的介质受众是样的,有很强的互补作用。
5、海尔 数据战略发展总监 孙鲲鹏,演讲题目:海尔大数据精准营销初探

以用户为中心,这里面强调两个字,客户关系里面的"关系"。怎么维护"关系"这个非常重要。所以在2.0阶段我们强调用户永远是对的。到3.0阶段,我们从顾客转移中转向人文中心,邀请顾客参与产品开发和信息沟通。
在这个背景下,利用数据对营销工作进行优化。2012年的时候,海尔进入新的战略阶段叫做网络化战略,探索全流程的用户交互。作为一个家电企业,大家感受比较强烈的是销售人员和服务人员和用户打过交道,我们提出无交互不海尔,无数据不营销,而且把营销的过程,每一次营销都看成数据的采集、挖掘、应用的过程。通过建立数据模型,用分数预测,用量化的分数定义客户潜在需求的高低,这是精准并基础的工作。海尔通过数据细化到内容和产品做到精准营销,为用户找产品,本质是B2C,海尔更希望做的是进行交互、创新为用户做产品,希望做到C2B,这样的颠覆的模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10