
大数据风控是P2P的面子,还是里子?
大数据信贷风控技术是群体思维的一种投射。国内的线上P2P,甚至线下P2P,在宣传公关的时候,都会提一嘴大数据风控。它是广告语的标配,是一个噱头,营销作用大于技术支撑。
“搭建大数据信贷风控系统,通常要涉及大数据的采集和数学建模分析。抛开数学、经济模型层面的技术问题,单说征信数据源这块,是需要征信的公共产品供给的,国内是没有征信局这样的公共机构的。而且国内的公民、企业信用评级没有历史传统,信用社会建设处于初始阶段。在这样的背景下,如果互金公司宣称自己有多完善的信贷风控系统,让坏账率、逾期率降得多低,多半是用来增信,招揽投资客的。更不用说技术层面的问题。当然,也不能否认国内互金公司,以及信贷控制技术公司正在做这件事,夯实金融基础设施,这点是值得肯定的。”Dvided说。
大数据信贷控制技术是互金发展引擎
David是一家大数据信贷控制技术开发公司的创始人。回国之前,他在美国留学,获得了一所常青藤名校的统计学研究生学位。毕业后,他去了一家顶尖的消费信用评级公司工作。他参与研发了国家级信用评定测算标准参照系统,这种系统建立在大数据基础上,针对消费数据,集合上百个经济模型和近千个参考变量生成综合算法,实现对消费者未来6~12个月信用行为的测算。同时,系统会根据数据、权重和算法的优化每一年重置一次,是世界上优化制度最完善的信用系统之一。
回国后,他根据自己的经验和技术,结合国内的征信环境,创办了这家服务互金的消费信贷风险评级技术公司。
“我们的大数据信贷控制系统是基于比较大的样本,比较宽泛的数据属性,建立评价体系,来评价借款方的偿还能力、偿还意愿、是否有潜在的风险等,给互联网金融等企业提供信用评级、信贷决策的技术驱动作用。”Dvided说。
Dvided希望构建像美国的上市P2P公司Lendingclub那样的信贷控制系统,它运用数学工具、IT信息技术、金融行业规律建立了智能评价机制——打分卡。它还通过人工干预、机械学习,让系统更加有效。从而为信审机构减少人工审核,并为强审核、弱审核提供依据。
“互金的主战场是在小微金融这块儿,要做好这部分业务,发展可靠的信用评级、管理系统,用信贷控制技术驱动互金发展势在必行。Lendingclub的贷款规模几十亿美元,但是风控、信审人员不到100名,主要靠信贷控制技术驱动。”Dvided说。
“身可卖”,灵魂不变
Dvided想让公司独立发展,就像美国的数据采集公司和信用评级机构都保持独立。在风控模型建模方面,公司发展没有遇到太多瓶颈。主要是在获取数据方面问题相对较多。在美国,个人、公司可以实时从征信局获得高质量的数据,基于数据用风控模型做信贷审批工作。而国内没有这样的征信机构。
Dvided采取与P2P公司、小贷公司、消费金融公司合作的方式,在客户授权的情况下,获取客户的银行卡、信用卡等消费使用的情况,以及通过搜索引擎技术,抓取电商购物的一些信息、数据,还有社交行为的数据,来弥补信用数据的缺失。
国内的P2P公司大多从事资产抵质押贷,与传统金融机构有重叠。纯线上的公司很少,做小微金融的也不多。这些公司的风控主要靠人海战术、人工审核。对于互金行业的真正前景,它们比较短视,考虑不多。这些P2P公司对Dvided所做的事不太了解,对他所做出的产品不屑一顾。
Dvided的公司要想生存,必须有合适的互金公司采购他的产品。他的公司要想发展,也需要一个P2P平台的实时交易来验证他的系统,并不断优化、改进。
后来,一家眼光比较长远的大型P2P公司看上他的技术,愿意使用他的大数据风控系统,但前提是完成并购,Dvided的公司成为这家P2P公司的风控研发中心。
这个条件对于Dvided来说,是苛刻的,违背了他让公司成长为一家独立、权威、公正的信用评级企业的初衷。
他纠结了很久。最后,他放弃了初衷,选择了合并。但是他没有改变建设适合中国本土的信用评级机构、促进信用社会机制实现的初心。生存下来,再谋求发展,这就是Dvided所处的现实,也是中国互金在曲折中前进的缩影。
不久的将来,大数据信贷风控系统所指向的信用机制可能不再是噱头,而是在中国社会为人做事的坚实根基。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08