京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据风控是P2P的面子,还是里子?
大数据信贷风控技术是群体思维的一种投射。国内的线上P2P,甚至线下P2P,在宣传公关的时候,都会提一嘴大数据风控。它是广告语的标配,是一个噱头,营销作用大于技术支撑。
“搭建大数据信贷风控系统,通常要涉及大数据的采集和数学建模分析。抛开数学、经济模型层面的技术问题,单说征信数据源这块,是需要征信的公共产品供给的,国内是没有征信局这样的公共机构的。而且国内的公民、企业信用评级没有历史传统,信用社会建设处于初始阶段。在这样的背景下,如果互金公司宣称自己有多完善的信贷风控系统,让坏账率、逾期率降得多低,多半是用来增信,招揽投资客的。更不用说技术层面的问题。当然,也不能否认国内互金公司,以及信贷控制技术公司正在做这件事,夯实金融基础设施,这点是值得肯定的。”Dvided说。
大数据信贷控制技术是互金发展引擎
David是一家大数据信贷控制技术开发公司的创始人。回国之前,他在美国留学,获得了一所常青藤名校的统计学研究生学位。毕业后,他去了一家顶尖的消费信用评级公司工作。他参与研发了国家级信用评定测算标准参照系统,这种系统建立在大数据基础上,针对消费数据,集合上百个经济模型和近千个参考变量生成综合算法,实现对消费者未来6~12个月信用行为的测算。同时,系统会根据数据、权重和算法的优化每一年重置一次,是世界上优化制度最完善的信用系统之一。
回国后,他根据自己的经验和技术,结合国内的征信环境,创办了这家服务互金的消费信贷风险评级技术公司。
“我们的大数据信贷控制系统是基于比较大的样本,比较宽泛的数据属性,建立评价体系,来评价借款方的偿还能力、偿还意愿、是否有潜在的风险等,给互联网金融等企业提供信用评级、信贷决策的技术驱动作用。”Dvided说。
Dvided希望构建像美国的上市P2P公司Lendingclub那样的信贷控制系统,它运用数学工具、IT信息技术、金融行业规律建立了智能评价机制——打分卡。它还通过人工干预、机械学习,让系统更加有效。从而为信审机构减少人工审核,并为强审核、弱审核提供依据。
“互金的主战场是在小微金融这块儿,要做好这部分业务,发展可靠的信用评级、管理系统,用信贷控制技术驱动互金发展势在必行。Lendingclub的贷款规模几十亿美元,但是风控、信审人员不到100名,主要靠信贷控制技术驱动。”Dvided说。
“身可卖”,灵魂不变
Dvided想让公司独立发展,就像美国的数据采集公司和信用评级机构都保持独立。在风控模型建模方面,公司发展没有遇到太多瓶颈。主要是在获取数据方面问题相对较多。在美国,个人、公司可以实时从征信局获得高质量的数据,基于数据用风控模型做信贷审批工作。而国内没有这样的征信机构。
Dvided采取与P2P公司、小贷公司、消费金融公司合作的方式,在客户授权的情况下,获取客户的银行卡、信用卡等消费使用的情况,以及通过搜索引擎技术,抓取电商购物的一些信息、数据,还有社交行为的数据,来弥补信用数据的缺失。
国内的P2P公司大多从事资产抵质押贷,与传统金融机构有重叠。纯线上的公司很少,做小微金融的也不多。这些公司的风控主要靠人海战术、人工审核。对于互金行业的真正前景,它们比较短视,考虑不多。这些P2P公司对Dvided所做的事不太了解,对他所做出的产品不屑一顾。
Dvided的公司要想生存,必须有合适的互金公司采购他的产品。他的公司要想发展,也需要一个P2P平台的实时交易来验证他的系统,并不断优化、改进。
后来,一家眼光比较长远的大型P2P公司看上他的技术,愿意使用他的大数据风控系统,但前提是完成并购,Dvided的公司成为这家P2P公司的风控研发中心。
这个条件对于Dvided来说,是苛刻的,违背了他让公司成长为一家独立、权威、公正的信用评级企业的初衷。
他纠结了很久。最后,他放弃了初衷,选择了合并。但是他没有改变建设适合中国本土的信用评级机构、促进信用社会机制实现的初心。生存下来,再谋求发展,这就是Dvided所处的现实,也是中国互金在曲折中前进的缩影。
不久的将来,大数据信贷风控系统所指向的信用机制可能不再是噱头,而是在中国社会为人做事的坚实根基。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26